
CMPSCI 601: Recall From Last Time Lecture 11

Definition: We say that
�

is reducible to � ,
� � � , iff�

total, recursive � � N � N,

�	��
 �
N  ��
 � �  � � � ��
  � � 

[In the future we will insist that � � � �
L  .]

Theorem: Suppose
� � � . Then,

1. If � is r.e., then
�

is r.e..

2. If � is co-r.e., then
�

is co-r.e..

3. If � is Recursive, then
�

is Recursive.

Definition: � is r.e.-complete iff

1. � �
r.e., and

2.
�	��� �

r.e.  ��� � � 
Theorem: � , HALT, and

� �������
are r.e. complete, hence

not recursive.
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CMPSCI 601: Reductions Lecture 11

Definition: We say that
�

is reducible to � ,
� � � , iff� � � �

L  ,
�	��
 �

N  ��
 � �  � � � ��
  � � 

Intuition:
� � � iff the placement of a very simple

front end � before a � -recognizer creates an
�

-recognizer.

��� � ��� � ��� i.e.,
�	�
	  � ��� ��	  � �� � � ��	   

S = f T

The Reduction Game: To build a reduction, � , from�
to � you must solve the following puzzle:

“For each input,



, what membership question, � ��
  ,
can I ask � such that the answer is the membership ques-
tion


 ��� �
.”
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Rice-Myhill-Shapiro Theorem:

Our proof that
� �������

was r.e.-complete had little to do
with the numbers 0 or 17. A very similar argument can
be used to show that “any non-trivial property of Turing
machines is undecidable”. (See [P], Theorem 3.2, page
62.)

Definition 11.1 Two Turing machines � and � are
equivalent if for any input

	
, � � 	 �� iff � ��	 �� and if

both output strings � ��	  and � ��	  are defined, they are
equal. �

Definition 11.2 A language is a property of machines
if for any numbers � and � such that � � and � � are equiv-
alent machines, � and � are either both in

�
or both not in�

. �

Theorem 11.3 Let
�

be a language other than 	 or N
that is a property of machines. Then

�
is not recursive.
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Proof:

Suppose that the (numbers of) machines that never halt
are not in

�
. (If they aren’t, we replace

�
by

�
and prove

that the latter is not recursive.) Since
�

is nonempty, pick
some number � so that � �

� �
.

We will reduce � to
�

, which means we must define a
total recursive function � so that �

� � iff � �
�  � �

.
This means that for any machine � � , we must build a
machine � ��� ��� that will have the property necessary for�

iff � � accepts � . We’ll do this using our assumptions.
If � � accepts � , � �	� ��� will be equivalent to � � and thus� �

�  will be in
�

. If � � does not accept � , � �	� ��� will
never halt and thus � �

�  will not be in
�

.

This is easy. We design � ��� ��� so that it first runs � � on
� , then (if it finishes that job) runs � � on the original
input. This machine simulates � � if � � accepts � and
never halts otherwise.

Since � � �
,
�

cannot be recursive. (We cannot say
that

�
is r.e.-complete because it might not be r.e., in fact

“most” such
�

’s are not.)

�
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CMPSCI 601: Primitive Recursive Functions Lecture 11

In Lecture 1 and HW#1 we defined the programming lan-
guage Bloop, with integer variables and bounded loops.
We will now see that the class of functions from N to N
that are implementable in Bloop are a very well studied
class called the primitive recursive functions.

You may have wondered whether “recursion” as you know
it from programming has anything to do with “recursive
functions” in this course. The name indeed comes from
defining functions recursively. Later this lecture we’ll
define the general recursive functions that are the same
as the partial recursive functions. But first we define a
less powerful kind of recursion. It defines functions that
are guaranteed to halt, but can’t define all total recursive
functions.

On HW#4 we’ll prove that there are recursive functions
that are not primitive recursive. So the primitive recur-
sive functions are a proper subset of the total recursive
functions.
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Initial functions:� �  � �
� � 	  � 	 � �
� �� ��	 �

������� � 	 �  � 	 � � � � �
�
	 ������� � � � � � �

Composition: � � � N � � N �
� � � �  � ��� � N � �

N:� � ��� � � ������� ��� �  ��	 � ������� � 	 �  � � � � � � 	  ������� ��� �
� 	  

Primitive Recursion: � � N � � N
� � � N ����� � N:� �

� ��� � ������� ��� �  � � � � � �  � � ��� � ��������� �  , given by:

� � � ��� � ��������� �  � � � � � ������� ��� � � �
�
� �

��� � ��������� �  � � � � �
� ��� � ������� ��� �  � � ���

�
������� ��� � 

Definition 11.4 The primitive recursive functions
(PrimRecFcns) are the smallest class of functions con-
taining the Initial functions and closed under Composi-
tion and Primitive Recursion. �
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Proposition 11.5 The following are in PrimRecFcns:

1. � � ��	  � if
��	 � �  then

��	 � �  else �
2.
	 � � � if

� � � 	  then
��	 � �  else �

3.
�

4. �
5. ����� ��	

���  � �
	
6. ������� ��	  � if

� 	 � �  then
�

else 	����� � � 	��
�
�

����� � ��	  � 	 �
��� ����� �� 	

Proposition 11.6 The class PrimRecFcns is closed un-
der the bounded � -operator. If � � 	  is a p.r. function,
then �! 	 " � � � ��	  � �$# is defined to be the least

	

such that � ��	  � � if such an
	

exists with
	 " � , or to

be � otherwise.
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On HW#3 you are asked to relate p.r. functions (in the
form of Bloop functions) to Turing machines. A key tool
in doing this is the coding of sequences of numbers as
single numbers, first developed by Gödel. He began with
elementary number theory:

Proposition 11.7 Prime � PrimeF
�

PrimRecFcns, where,

Prime
��	  � if

�
“
	

is prime”  then
�

else �
PrimeF

�
�  � prime number � , i.e, PrimeF

� �  � 	 , PrimeF
� �  ��

, PrimeF
� 	  � � , PrimeF

� �  � � , PrimeF
���  � � �

.

Proof:
	�� � � � ��� � �  ��	 � � � 

Prime
��	  � 	 � � 	 �	� � " 	  � � � 	 � � � � 

NextPrime
��	  � �  �
 � ��	 � �  	 �

� � 
 � 	 	
Prime

� 
  #

PrimeF
� �  � 	

PrimeF
��	 � �  � NextPrime

�
PrimeF

� 	  
�
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Proposition 11.8

IsSeq � Length � Item
�

PrimRecFcns, where,

Seq
��� �

�
� �
������� � � �  � 	 ��� �

� � ��� �
�
���	� PrimeF

�
�  ��
 �

�
IsSeq

� �  � if
� �

codes a Sequence 
then

�
else �

Length
�
Seq

��� �
�
� �
������� � � �   � �

� �
Item

�
Seq

��� �
�
� �
������� � � �  � �  � � �

Proof:

Good
��	
�
�  � �	� � " �  � � � " 	 	

PrimeF
� �  � � 

 � � � 	 	
PrimeF

� � �� � �  
IsSeq

� �  � � � 	 " �  Good
��	
�
� 

Length
� �  � �! 	 " � �

Good
� 	
�
�  #

Item
� �
� �  � �  � " � �

IsSeq
� �  	

PrimeF
� � �� �

� � �
	

PrimeF
� � �� ��� � � � #

�
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As your intuition about Bloop should begin to tell you,
almost anything computable can be computed in Bloop.
(On HW#4 you’ll find a t.r. function that can’t.) In par-
ticular, we can simulate Turing machines:

Primitive Recursive COMP Theorem: [Kleene]

Let COMP
�
� �
	
��� ���  mean � �

��	  � � , and that

� is � � ’s complete computation on input
	

.

Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

� � Seq
�
ID

�
� ID

�
������� � ID � 

Where each ID � is a sequence number of tape-cell con-
tents:

ID � � Seq
���
�
� �
������� � � � �

�
�
� � � � ��� � � � �

�
������� � �	� 

COMP
�
� �
	
��� ���  


START
�
Item

� � � �  � 	  	
END

�
Item

� � � Length
� �  � �  ���  	

�	� � "
Length

� �   NEXT
�
� � Item

� � � �  � Item
� � � � � �  

�
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CMPSCI 601: Primitive Recursive = Bloop Lecture 11

We have two sets of functions from N � to N, each defined
recursively:

�
� �  , � ��	  , and � �� � 	 � ������� � 	 �  are p.r.,

� the composition of p.r. functions is p.r., and
� the function made from two p.r. functions by the

primitive recursion rule is p.r.

� “++” statements are Bloop program blocks
� an assignment of a call-by-value function call is a

block
� the concatenation of two blocks is a block
� a variable-bounded loop containing a block is a block

To be more precise about Bloop we would have to be
more careful about a formal semantics. Esssentially, given
a binding of some variables at the start of a block, we get
a new binding at the end, and the exact transformation
of the binding could be defined by induction. Here we’ll
rely on our intuitions about real programs.
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Theorem 11.9 Every primitive recursive function can be
implemented in Bloop.

Proof:

Base Cases:

declare zeta() {
return x;}

declare sigma(x) {
return x++;}

declare pi_2_4 (x1, x2, x3, x4) {
return x2;}
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Composition Example:

� ��	
���  � � � � � ��	

���  � � �
� 	
���  � ��� ��	 ���  

declare f(x,y) {
a = h1(x,y);
b = h2(x,y);
c = h3(x,y);
return g(a,b,c);}

Primitive Recursion Example: � � � ��� � �  � � � � � �  ,� �
�
� �

��� � �  � � � � �
� ��� � �  � � ��� � � 

declare f(n,y,z) {
a = g(y,z);
i = zeta();
for (n) {

a = h(a,i,y,z);
i++;}

return a;}

�
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Theorem 11.10 The output of any Bloop program is a
primitive recursive function.

What is easier to prove by induction is the following:

Theorem 11.11 After any Bloop program block, any vari-
able defined at the end is a primitive recursive function
of those variables defined at the beginning.

Proof:

Successor: If the block is “xi++”, and the variables de-
fined are  	 �

������� � 	 � # , then the end value of
	 � for

� �� � is � �� ��	 � ������� � 	 �  and the end value of
	 � is� � � �� ��	 � ������� � 	 �  .

Assignment: If the block is “x = f(y1,...,yk)” then
by the IH since � is defined elsewhere, it is a p.r. func-
tion of the � ’s. By projections we can make

	
a p.r.

function of all defined variables, and other variables
are unchanged.
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Concatenation: If the block is “B;C” where
�

and �
are blocks, by the IH every variable � � defined after�

is a p.r. function of those variables
	 � defined be-

fore
�

, and every variable
� � defined after � is a p.r.

function of the � ’s. By composition we write each
� �

as a p.r. function of the
	

’s.

Loops: Suppose the block is “for (n) B;” where
�

is a block, and let us first consider the case where
only one variable � is defined during

�
. By the IH

the effect of
�

on � is given by a p.r. function �
� �  .

We define � �
� ��� �  to be the value of � after

�
has

been executed � times starting from � � � � . Clearly
we can define � by primitive recursion, with � � � �  �� � and

� � � �
� ��� �  � � ��� �  � �

� � �
� ��� �   .

Now say we have � different variables defined during�
. We use the sequence tools developed above. Let� be a block that takes its single argument, decodes it

into � variables, runs
�

on them, and codes the � an-
swers as a single number. By composition, � ’s effect
on its variable is p.r., and by the argument above so
is that of “for (x) C;”. Encoding and decoding
gives us p.r. functions for “for (x) B;”.

�
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CMPSCI 601: General Recursive Functions Lecture 11

We will now increase the power of the primitive recursive
functions by adding one more rule:

Definition 11.12 If � ��	
��� � ������� ��� �  is a function, we

define the � -operator on � with respect to
	

. �  	 �� ��	
��� � ������� ��� �  # is the following partial function � � � � ������� ��� �  .

If there is a value of
	

such that
	 " � and � ��	

��� � ������� ��� �  �� , then � � � � ������� ��� �  is the least such value. If there is no
such value of

	
, � � � � ������� ��� �  is undefined. �

Definition 11.13 The general recursive functions are
the least set of partial functions containing the initial func-
tions and closed under composition and the � operator. �

Definition 11.14 Floop is the programming language
consisting of Bloop augmented with one more statement
type. If

�
is a block, possibly changing the value of

	
,

“while (x) B” is a block that keeps executing
�

as
long as

	
is positive. (It may run forever – if so its be-

havior is a strictly partial function.) �
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Theorem 11.15 A partial function from N � to N is gen-
eral recursive iff it is computed by a Floop program.

Proof: Exercise (HW#4). �

Theorem 11.16 A partial function from N to N is general
recursive iff it is partial recursive.

Proof:

� � : Inductively simulate Floop blocks by TM’s.
� � : Let � be a partial recursive function. Then � � 	  �� iff there is a halting computation of � ’s TM on in-

put
	

yielding � . Using the COMP predicate and the
� operator we construct a general recursive function
that outputs � ��	  if it is defined.

�
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co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP 

NP 

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0

18


