Theorem 9.4: The busy beaver function, $\sigma(n)$, is eventually larger than any total, recursive function.

Theorem 9.5: There is a Universal Turing Machine U such that,

$$U(P(n,m)) = M_n(m)$$

Theorem 9.6: (Unsolvability of Halting Problem) Let,

$$\text{HALT} = \{P(n,m) \mid \text{TM } M_n(m) \text{ eventually halts}\}$$

Then, HALT is r.e. but not recursive.

Listing of all r.e. sets: W_0, W_1, W_2, \cdots

$$W_i = \{n \mid M_i(n) = 1\}$$

Corollary 9.8: Let,

$$K = \{n \mid M_n(n) = 1\} = \{n \mid U(P(n,n)) = 1\}$$

$$= \{n \mid n \in W_n\}$$

Then,

$$K \in \text{r.e. - Recursive}$$
Notation: $M_n(x) \downarrow$ means that TM M_n converges on input x, i.e.,

$$M_n(x) \downarrow \iff M_n(x) \in \mathbb{N} \iff M_n(x) \neq \uparrow$$

Fundamental Theorem of r.e. Sets: Let $S \subseteq \mathbb{N}$. T.F.A.E.

1. S is the domain of a partial, recursive function, i.e.,
 $$(\exists n)(S = \text{dom}(M_n(\cdot))) = \{x \in \mathbb{N} \mid M_n(x) \downarrow\}$$

2. $S = \emptyset$ or S is the range of a total, recursive function, i.e., $S = \emptyset$ or $S = \text{range}(M_n(\cdot)) = M_n(\mathbb{N})$, for some total, recursive function $M_n(\cdot)$.

3. S is the range of a partial, recursive function, i.e.,
 $$S = M_n(\mathbb{N}), \text{ for some } n \in \mathbb{N}$$

4. S is r.e., i.e., $S = W_n$, for some $n \in \mathbb{N}$
Proof: (Please learn this proof!)

(1 \Rightarrow 2): Assume (1), $S = \{x \mid M_n(x) \downarrow\}$.

case 1: $S = \emptyset$. Thus S satisfies (2).

case 2: $S \neq \emptyset$. Let $a_0 \in S$.

From M_n compute M_r, which on input z does the following:

1. $x := L(z); y := R(z)$ // i.e., $z = P(x, y)$
2. run $M_n(x)$ for y steps
3. if it halts then return(x)
4. else return(a_0)

Claim: $S = M_r(N) = \{M_r(x) \mid x \in N\}$.

$M_r(N) \subseteq S$

$M_r(N) \supseteq S$

Suppose $x \in S$.
Thus $M_n(x)$ converges in some number y of steps.
Therefore, $M_r(P(x, y)) = x$.

Note the non-computable step in the construction: there is no way to tell whether we are in case 1 or case 2.
(2) ⇒ (3): Assume (2). If \(S = \emptyset \) then \(S = M_0(\mathbb{N}) \) where \(M_0 \) is a Turing machine that halts on no inputs.

Otherwise, \(S = M_n(\mathbb{N}) \), i.e., \(S \) is the range of the partial, recursive function \(M_n(\cdot) \).

Note: Even though \(M_n(\cdot) \) is total, it is still considered a “partial, recursive function”. However, of course, \(M_n(\cdot) \) is not “strictly partial”.
$$(3) \Rightarrow (4): \text{Assume (3), } S = M_n(N).$$

From M_n we construct M_d, which on input x does the following:

1. for $i := 1$ to ∞ {
2. run $M_n(0), M_n(1), \ldots, M_n(i)$ for i steps each.
3. if any of these output x, then return (1)
}

The above construction is called dove-tailing.

Claim: $M_d(\cdot) = p_S(\cdot)$.

If $x \in S$, then $x \in \text{range}(M_n(\cdot))$.

So for some j and k, $M_n(j) = x$ and the computation takes k steps.

Thus, at round $i = \max(j, k)$, $M_d(x)$ will halt and output “1”.

If $x \not\in S$, then $M_d(x)$ will never halt.

Thus, $S = W_d = \{x \mid M_d(x) = 1\}$.

(4) ⇒ (1): Assume (4), and thus $S = W_n$.

\[
S = \{ i \mid M_n(i) = 1 \}
\]

From M_n, construct M_d, which on input x does the following:

1. run $M_n(x)$
2. **if** ($M_n(x) = 1$) **then return** (1)
3. else run forever

\[
S = \{ x \mid M_d(x) \downarrow \}
\]

Thus, $S = \text{dom}(M_d(\cdot)) = \{ x \mid M_d(x) \downarrow \}$. ♠
This theorem lets us put the “enumerable” in r.e.

A nonempty language A is said to be Turing enumerable if there exists a TM that, when started on blank tape, lists the elements of A. The TM will take forever to do so if A is infinite, and it might repeat elements.

It should be pretty clear that for nonempty sets “Turing enumerable” means exactly “the range of a total recursive function”. So except for \emptyset, “Turing enumerable” means exactly “r.e.”
An infinite set of numbers is *Turing enumerable in increasing order* if it is Turing enumerable by a machine that lists i before j whenever $i < j$.

It’s pretty easy to see that an infinite set is Turing enumerable in increasing order iff it is recursive:

- \Rightarrow: Keep running the TM until you hit the target or pass it.
- \Leftarrow: Run through all numbers in increasing order and test each one, listing the ones that are in the language.
Definition 7.1 Let S and T be sets of numbers. We say that S is reducible to T ($S \leq T$) iff there exists a total, recursive $f : \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$(\forall w \in \mathbb{N}) \ (w \in S) \iff (f(w) \in T)$$

Note: Later we will require $f \in F(\text{DSPACE}[\log n])$.

The notation “$S \leq T$” is meant to suggest “S is no more difficult than T”. To use this notation, we should be confident that “\leq” is reflexive and transitive (You’ll check this on HW#3.) The notation suggests as well that it is anti-symmetric, but it is not. It is quite possible to have $S \leq T$, $T \leq S$, and $S \neq T$ all be simultaneously true. In this case we say S and T are equivalent.

This kind of reduction is called a many-one reduction. Later we’ll see another kind called a Turing reduction.
An Example:

\[A_{0,17} = \{n \mid M_n(0) = 17\} \]

Claim: \(K \leq A_{0,17} \).

Proof: Define \(f(n) \) as follows:

\[
M_{f(n)} = \begin{cases}
\text{erase input; write } n & M_n \\
\text{if 1 then write 17 else loop}
\end{cases}
\]

\[n \in K \iff M_n(n) = 1 \iff M_{f(n)}(0) = 17 \iff f(n) \in A_{0,17} \]

\[\spadesuit \]

If \(K \leq A_{0,17} \) really means “\(K \) is no harder than \(A_{0,17} \)” or equivalently “\(A_{0,17} \) is no easier than \(K \)”, then we should be able to conclude that \(A_{0,17} \) is not recursive because \(K \) is not recursive. The next theorem will let us do this in general.
Fundamental Theorem of Reductions:
If $S \leq T$ are languages then:

1. If T is r.e., then S is r.e.
2. If T is co-r.e., then S is co-r.e.
3. If T is Recursive, then S is Recursive.

Moral: Suppose $S \leq T$. Then,

- If T is easy, then so is S.
- If S is hard, then so is T.

Another way to phrase this is that r.e., co-r.e., and Recursive are each downward closed under reductions.
Proof: Let \(f : S \leq T \), i.e., \((\forall x)(x \in S \iff f(x) \in T)\)

1. Suppose \(T = W_i = \{x \mid M_i(x) = 1\} \).

 From \(M_i \) compute the TM \(M_i' \) which on input \(x \) does the following:

 (a) compute \(f(x) \)

 (b) run \(M_i(f(x)) \)

 Then

 \[(x \in S) \iff (f(x) \in T) \iff (M_i(f(x)) = 1) \iff (M_i'(x) = 1)\]

 Therefore, \(S = W_{i'} \), and we have shown that \(S \in \text{r.e.} \), as desired.
Recall our hypothesis for this proof:
\[f : S \leq T, \quad \text{i.e.,} \quad (\forall x) (x \in S \iff f(x) \in T) \]

The last two parts of the theorem follow directly from the first:

2. **Observation:** \(S \leq T \iff \overline{S} \leq \overline{T} \).

\[T \in \text{co-r.e.} \iff \overline{T} \in \text{r.e.}, \overline{S} \in \text{r.e.} \iff S \in \text{co-r.e.} \]

3. \(T \in \text{Recursive} \quad \Rightarrow \quad (T \in \text{r.e.} \land T \in \text{co-r.e.}) \quad \Rightarrow \]

\[(S \in \text{r.e.} \land S \in \text{co-r.e.}) \quad \Rightarrow \quad S \in \text{Recursive} \]

\[\spadesuit \]
Definition 7.2 Let \(C \subseteq \mathbb{N} \). \(C \) is r.e.-complete iff

1. \(C \in \text{r.e.} \), and
2. \((\forall A \in \text{r.e.}) \ (A \leq C) \)

Intuition: \(C \) is a “hardest” r.e. set. In the “\(\leq \)” ordering, in that it is above all other r.e. sets.

If you have seen a definition of “\(\text{NP} \)-complete”, this definition should look familiar. \(\text{NP} \)-completeness was explicitly modeled on this historically earlier concept.

It is perhaps odd that there are any r.e.-complete sets at all – the definition doesn’t suggest why there should be. But in fact we’ve already seen one.
Theorem 7.3 \(K \) is r.e. complete.

Proof: Let \(A \in \text{r.e.} \) be arbitrary, so we know that \(A = W_i \) for some \(i \).

We want: \((\forall n)(n \in A \iff f(n) \in K) \)

Note the implicit types here. The number \(f(n) \) is going to be interpreted as the number of a TM.

Define the recursive function \(f \) which on input \(n \) computes *this particular* TM:

\[
M_{f(n)} = \begin{array}{c|c|c}
\text{Erase input} & \text{Write } n & M_i \\
\end{array}
\]

\[
n \in A \iff M_i(n) = 1 \iff (\forall x)M_{f(n)}(x) = 1 \\
\iff M_{f(n)}(f(n)) = 1 \iff f(n) \in K
\]

Get used to numbers being treated as machines! Lots of our standard languages are of the form \(\{n: M_n \text{ is a TM such that. . .}\} \).
Proposition 7.4 Suppose that C is r.e.-complete and the following hold:

1. $S \in \text{r.e.}$, and
2. $C \leq S$

then S is r.e.-complete.

Proof:

Show: $(\forall A \in \text{r.e.})(A \leq S)$

Know: $(\forall A \in \text{r.e.})(A \leq C)$

Follows by transitivity of \leq: $A \leq C \leq S$.

Corollary 7.5 $A_{0,17}$ is r.e.-complete.

Every r.e.-complete set is r.e. and not recursive.
\begin{align*}
\text{HALT} & = \{ P(n, m) \mid \text{TM } M_n(m) \text{ eventually halts} \} \\
\text{Proposition 7.6} \text{ HALT is r.e.-complete.} \\
\text{Proof:} & \text{ We have already seen that HALT is r.e. It thus suffices to show that } K \leq \text{HALT.} \\
\text{We want to build a total, recursive } f \text{ such that for all } w \in \mathbb{N}, \\
\text{such that for all } w \in \mathbb{N}, \\
\quad w \in K & \iff f(w) \in \text{HALT} \\
\quad M_w(w) = 1 & \iff M_{L(f(w))}(R(f(w))) \text{ halts} \\
\text{That is, we want,} \\
\quad M_w(w) = 1 & \iff M_{\ell(r)} \text{ halts, where } f(w) = P(\ell, r) \\
\text{Given } w, \text{ let, } M_{\ell(w)} = \\
\begin{array}{cccc}
\text{Erase input} & \text{Write } w & M_w & \text{if 1 then halt else diverge} \\
\end{array} \\
\text{Letting } f(w) = P(\ell(w), 0), \text{ we have that} \\
\quad M_w(w) = 1 & \iff M_{\ell(w)}(0) \text{ halts} & \iff f(w) \in \text{HALT}\hspace{1em} \blacklozenge
\end{align*}