CMPSCI 601 Turing Machines Lecture 4

M= (Q,%,0,s)

(). finite set of states; s € ()
>: finite set of symbols; >, LI € ¥
0:Q xY = (QU{h}) x XX {+, =, —}

s (>111(10]1 U L)---

CMPSCI 601 Example TM Lecture 4
mvRt.tm S q qo q1
0 s,0,— | qo, U, —
1 s,1,—| q,U,—
L q, L, < 5,0, 15,1,
> s,>,— | h,>,—
comment | find LI | memorize | change | change
&erase | LUto0 | Ltol
s |P>]/1]10(1|ufu-
s > 1(0/1|uL-
s |>|1]10[{1|u|u-
s |>|[1]1]0/{1|ufuy-
s |>|[1]1(0]1)|u|uy-
s (>1/1/0]1|[L)ju-
g |>[1]1]0|1]|ujul-
g |>[1/1]0 /ULyl -
s (>1/1/0|U|1|U-

mvRt.tm S q qo q1

0 s,0,— [qo,d, —

1 s,1,— |q, U, —

L q, L, < $,0,¢— s, 1,4

> s,>,— | h,>, —
s |>]11/1/0/1 /U Uj-
a0 1/1]ofulmlul-
S 1110/ Uj|1/u-
q 111/0/|uj1|L -
90 11Uy -
S 1(1(ujoj1|u-
g |>]|U/1/1/01
h |[>] 11101

CMPSCI 601 TM History Lecture 4

Hilbert’s Program [1901]: Give a complete axiomization
of all of mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true state-
ments in mathematics.

This led to active interest in 1930’s in the question: “What
IS a mechanical procedure?”

Church: Lambda calculus
Gaddel: Recursive function
Kleene: Formal system
Markov: Markov algorithm
Post: Post machine
Turing: Turing machine

Fact: The above models are all define exactly the same
class of “computable” functions.

Church-Turing Thesis: The intuitive idea of “effectively
computable” is captured by the precise definition of “com-
putable” in any of the above models.

4

CMPSCI 601 TM Philosophy Lecture 4

“Why is a Turing machine as powerful as any other com-
putational model?”

Intuitive answer: Imagine any computational device. It
has:

e Finitely many states

e Ability to scan limited amount per step: one page at
a time

e Ability to print limited amount per step: one page at
a time

e Next state determined by current state and page cur-
rently being read (but what about randomization?)

Note: Without the potentially infinite supply of tape cells,
paper, extra disks, extra tapes, etc. we have just a (poten-
tially huge) finite state machine.

The PC on your desk, with 20 GB of hard disk is a finite
state machine with over 2169,000,000,000 gtateg]

This is better modeled as a TM with a bounded number
of states, and an “infinite tape”, actually meaning a finite
memory that expands whenever necessary .

5

CMPSCI 601: TM Functions Lecture 4

[y if M oninput “>wl)” eventually
M(w) = halts with output “>yLJ”

| otherwise

ZO =) — {l>, |_|}
Usually, ¥y = {0,1}
Definition 4.1 Let f : X5 — X5 be a total or partial

function. We say that f is recursive iff 3 TM M, f =
M(-), i.e.,

(Vw € ¥g) flw) = M(w). o

Remark 4.2 There is an easy to compute 1:1 and onto
map between {0, 1}* and N. Thus we can think of the
contents of a TM tape as a natural number and talk about
f : N — N being recursive. (We may visit thisissue in
HW#2.)

Partial function f : N — N isatotal function f : D — N
where D C N. A partial function that is not total is called
strictly partial. If n € N — D, f(n) ="

CMPSCI 601: Recursive, r.e. sets Lecture 4

Definition 4.3 Let.S C Xjor S C N.

S isarecursive set iff the function y s is a (total) recursive

function,
1 ifzef§

xsle) = {0 otherwise

S Is a recursively enumerable set (S is r.e.) iff the func-
tion pg Is a (partial) recursive function,

(z) = 1 ifxzeS
Ps\E) =1 1 otherwise

Proposition 4.4 If S isrecursivethen S isr.e.

Proof: Suppose S is recursive and let M be the TM com-
puting xs.

Build M’ simulating M but diverging if M (x) = 0. Thus
M’ computes pg. [

CMPSCI 601: Some Recursive Functions Lecture 4

Proposition 4.5 Thefollowing functionsarerecursive. They
are all total except for peven.

copy(w) = ww
on) =n+1
plus(n,m) = n+m
times(n,m) = n xm
exp(n,m) = n™
(1 ifniseven
xeven(n) = |0 otherwise
(1 ifniseven
peven(n) = | otherwise

Proof: Exercise: please convince yourself that you can
build TMs to compute all of these functions! [

CMPSCI 601: Recursive = r.e. Cco-r.e. Lecture 4

If C is any class of sets, define co-C to be the class of sets
whose complements are in C,

coC = {S|Sec

Theorem 4.6 S isrecursiveiff S and .S arebothr.e.
Thus, Recursive = r.e. N co-r.e.

Proof: If S € Recursive then y is a recursive function.
Thus so is xg(z) = 1 — xs(x)
Thus, S and S are both recursive and thus both r.e.

10

Suppose S € r.e. N co-r.e.
ps = M(); ps=M'()
Define ' = M| M’ on input x:

1.forn :=1to oo {
2. run M (z) for n steps.

3 If M(x) =1Iinn steps then return(1)
4. run M'(z) for n steps.
5 If M'(x) =1innsteps then return(0)}

Thus, T'(-) = xs and thus S € Recursive.

11

Arithmetic Hierarchy re

co-r.e.
W co-r.e. r.e complete

Recursive

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete complete

co-NP NP
NP N co-NP

"truly feasible"

NC

NC 2

log(CFL) sact

NSPACE[log n]

DSPACE[log n]

1
Regular NC

ThC

L ogarithmic-Time Hierarchy AC’

12

