$M = (Q, \Sigma, \delta, s)$

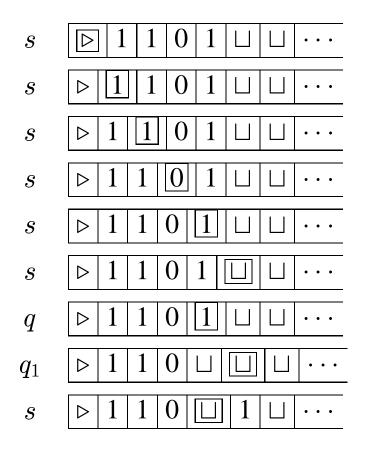
- Q: finite set of states; $s \in Q$
- Σ : finite set of symbols; $\triangleright, \sqcup \in \Sigma$
- $\delta: Q \times \Sigma \ \rightarrow \ (Q \cup \{h\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$

$s \mid \triangleright \mid 1 \mid 1 \mid 0 \mid 1 \mid \sqcup \mid \sqcup \mid \cdots$

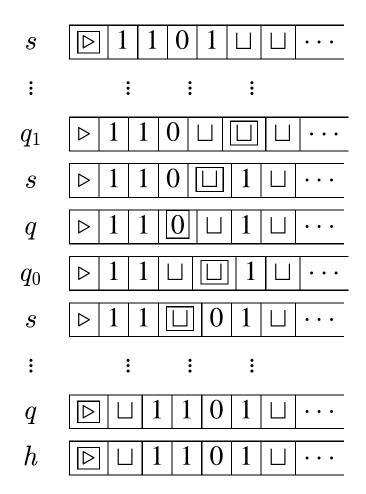
CMPSCI 601:

Example TM

mvRt.tm	s	q	q_0	q_1
0	s, 0, ightarrow	$q_0,\sqcup, ightarrow$		
1	$s, 1, \rightarrow$	q_1, \sqcup, \to		
	q,\sqcup,\leftarrow		$s, 0, \leftarrow$	$s, 1, \leftarrow$
\triangleright	$s, \triangleright, \rightarrow$	$h, \triangleright, -$		
comment	find \sqcup	memorize	change	change
		& erase	\sqcup to 0	\sqcup to 1



mvRt.tm	s	q	q_0	q_1
0	s, 0, ightarrow	q_0, \sqcup, \to		
1	$s, 1, \rightarrow$	q_1, \sqcup, \to		
	q,\sqcup,\leftarrow		$s, 0, \leftarrow$	$s, 1, \leftarrow$
\triangleright	$s, \triangleright, \rightarrow$	$h, \triangleright, -$		



TM History

Hilbert's Program [1901]: Give a complete axiomization of all of mathematics!

Such a complete axiomization would have provided a mechanical procedure to churn out exactly all true statements in mathematics.

This led to active interest in 1930's in the question: **"What** is a mechanical procedure?"

Church: Lambda calculus

Gödel: Recursive function

Kleene: Formal system

Markov: Markov algorithm

Post: Post machine

Turing: Turing machine

Fact: The above models are all define exactly the same class of "computable" functions.

Church-Turing Thesis: The intuitive idea of "effectively computable" is captured by the precise definition of "computable" in any of the above models.

CMPSCI 601:

"Why is a Turing machine as powerful as any other computational model?"

Intuitive answer: Imagine any computational device. It has:

- Finitely many states
- Ability to scan limited amount per step: one page at a time
- Ability to print limited amount per step: one page at a time
- Next state *determined* by current state and page currently being read (but what about randomization?)

Note: Without the potentially infinite supply of tape cells, paper, extra disks, extra tapes, etc. we have just a (potentially huge) **finite state machine**.

The PC on your desk, with 20 GB of hard disk is a finite state machine with over $2^{160,000,000}$ states!

This is better modeled as a TM with a bounded number of states, and an "infinite tape", actually meaning a finite memory that expands whenever necessary .

TM Functions

 $M(w) \equiv \begin{cases} y & \text{if } M \text{ on input ``} w \sqcup `` eventually} \\ & \text{halts with output ``} y \sqcup `` \\ \nearrow & \text{otherwise} \end{cases}$

 $\Sigma_0 \equiv \Sigma - \{ \triangleright, \sqcup \}$ Usually, $\Sigma_0 = \{0, 1\}$

Definition 4.1 Let $f : \Sigma_0^* \to \Sigma_0^*$ be a total or partial function. We say that f is **recursive** iff \exists TM M, $f = M(\cdot)$, i.e.,

$$(\forall w \in \Sigma_0^\star) \quad f(w) = M(w) \;.$$

Remark 4.2 There is an easy to compute 1:1 and onto map between $\{0,1\}^*$ and **N**. Thus we can think of the contents of a TM tape as a natural number and talk about $f : \mathbf{N} \to \mathbf{N}$ being **recursive**. (We may visit this issue in HW#2.)

Partial function $f : \mathbf{N} \to \mathbf{N}$ is a total function $f : D \to \mathbf{N}$ where $D \subseteq \mathbf{N}$. A partial function that is not total is called **strictly partial**. If $n \in \mathbf{N} - D$, $f(n) = \nearrow$. CMPSCI 601:

Definition 4.3 Let $S \subseteq \Sigma_0^*$ or $S \subseteq \mathbf{N}$.

S is a *recursive set* iff the function χ_S is a (total) recursive function,

$$\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

S is a recursively enumerable set (S is r.e.) iff the function p_S is a (partial) recursive function,

$$p_S(x) = \begin{cases} 1 & \text{if } x \in S \\ \nearrow & \text{otherwise} \end{cases}$$

Proposition 4.4 If S is recursive then S is r.e.

Proof: Suppose S is recursive and let M be the TM computing χ_S .

Build M' simulating M but diverging if M(x) = 0. Thus M' computes p_S .

CMPSCI 601: Some Recursive Functions

Lecture 4

Proposition 4.5 The following functions are recursive. They are all total except for p_{even} .

copy(w) = ww $\sigma(n) = n + 1$ plus(n,m) = n + m $times(n,m) = n \times m$ $exp(n,m) = n^{m}$ $\chi even(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{otherwise} \end{cases}$ $peven(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ \nearrow & \text{otherwise} \end{cases}$

Proof: Exercise: please convince yourself that you can build TMs to compute all of these functions!

CMPSCI 601: **Recursive** = **r.e.** \cap **co-r.e.** Lecture 4

If C is any class of sets, define co-C to be the class of sets whose complements are in C,

$$\operatorname{co-}\mathcal{C} = \{S \mid \overline{S} \in \mathcal{C}\}$$

Theorem 4.6 *S* is recursive iff *S* and \overline{S} are both *r.e.* Thus, **Recursive** = **r.e.** \cap co-**r.e.**

Proof: If $S \in$ **Recursive** then χ_S is a recursive function. Thus so is $\chi_{\overline{S}}(x) = 1 - \chi_S(x)$

Thus, S and \overline{S} are both recursive and thus both r.e.

Suppose $S \in$ **r.e.** \cap co-**r.e.** $p_S = M(\cdot); \quad p_{\overline{S}} = M'(\cdot)$ Define T = M || M' on input x:

Thus, $T(\cdot) = \chi_S$ and thus $S \in \mathbf{Recursive}$.

