
CMPSCI 601: Turing Machines Lecture 4
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CMPSCI 601: Example TM Lecture 4
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CMPSCI 601: TM History Lecture 4

Hilbert’s Program [1901]: Give a complete axiomization
of all of mathematics!

Such a complete axiomization would have provided a
mechanical procedure to churn out exactly all true state-
ments in mathematics.

This led to active interest in 1930’s in the question: “What
is a mechanical procedure?”

Church: Lambda calculus

Gödel: Recursive function

Kleene: Formal system

Markov: Markov algorithm

Post: Post machine

Turing: Turing machine

Fact: The above models are all define exactly the same
class of “computable” functions.

Church-Turing Thesis: The intuitive idea of “effectively
computable” is captured by the precise definition of “com-
putable” in any of the above models.

4



CMPSCI 601: TM Philosophy Lecture 4

“Why is a Turing machine as powerful as any other com-
putational model?”

Intuitive answer: Imagine any computational device. It
has:

� Finitely many states
� Ability to scan limited amount per step: one page at

a time
� Ability to print limited amount per step: one page at

a time
� Next state determined by current state and page cur-

rently being read (but what about randomization?)

Note: Without the potentially infinite supply of tape cells,
paper, extra disks, extra tapes, etc. we have just a (poten-
tially huge) finite state machine.

The PC on your desk, with 20 GB of hard disk is a finite
state machine with over

� ��� ��� � � ��� � � ��� � � �
states!

This is better modeled as a TM with a bounded number
of states, and an “infinite tape”, actually meaning a finite
memory that expands whenever necessary .
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CMPSCI 601: TM Functions Lecture 4
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Remark 4.2 There is an easy to compute 1:1 and onto
map between

� � � �%� �
and N. Thus we can think of the

contents of a TM tape as a natural number and talk about
	 
 N

�
N being recursive. (We may visit this issue in

HW#2.)

Partial function 	 
 N
�

N is a total function 	 
�� �
N

where � � N. A partial function that is not total is called
strictly partial. If � �

N
! � , 	 � � � � �

.

7



CMPSCI 601: Recursive, r.e. sets Lecture 4

Definition 4.3 Let � � � � �
or � � N.

� is a recursive set iff the function ��� is a (total) recursive
function,
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� is a recursively enumerable set ( � is r.e.) iff the func-
tion ��� is a (partial) recursive function,
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Proposition 4.4 If � is recursive then � is r.e.
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CMPSCI 601: Some Recursive Functions Lecture 4

Proposition 4.5 The following functions are recursive. They
are all total except for � even.

copy
� � � � � �

� � � � � � � �

plus
� � ��� � � � � �
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� � ��� � � ���

� even
� � � � ���� ���

�
if � is even

�
otherwise

� even
� � � � ���� ���

�
if � is even�
otherwise

Proof: Exercise: please convince yourself that you can
build TMs to compute all of these functions!

�
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CMPSCI 601: Recursive
�

r.e. � co-r.e. Lecture 4

If � is any class of sets, define co- � to be the class of sets
whose complements are in � ,

co- � � � � � � � � �

Theorem 4.6 � is recursive iff � and � are both r.e.

Thus, Recursive
�

r.e. � co-r.e.

Proof: If � �
Recursive then � � is a recursive function.

Thus so is � � ��� � � ��! � � �����

Thus, � and � are both recursive and thus both r.e.
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Suppose � �
r.e. � co-r.e.

� � � � � # ��� � � � � 	 � # �

Define � � � � � � 	
on input

�
:

1. for � 
 � �
to � �

2. run
� ��� �

for � steps.

3. if
� ����� � �

in � steps then return(1)

4. run
� 	 ��� �

for � steps.

5. if
� 	 ��� � � �

in � steps then return(0)
�

Thus, � � # � � � � and thus � �
Recursive.

�
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