CMPSCI 601: Recall From Last Time L ecture 15

Definition: I'is consistent iff I' I/ false

Completeness Theorem: If I' Is consistent then I" is
satisfiable (that is, there exists a model A such that A |=
I).

Corollary:

['E o & ['F o
=X & =@

FO-VALID = FO-THEOREMS

Note that FO-VALID and FO-THEOREMS are state-
ments that are true in any model of the given structure.
While we constructed a special model where every state-
ment was either provably true or provably false, this is
not true in general. An FO-VALID statement about graphs
would be true for all graphs, but most interesting state-
ments are true for some graphs and not for others.

Compactness Theorem: If every finite subset of I' has
a model, then I" has a model.

1

CMPSCI 601 Formal Number Theory

Lecture 15

rXxoy)=(xxy) +x
NTs = (Vz)(z10=1)
NTy = (Vay)(z T o(y) = (z Ty) x z)
NTy = (Va)(z < o(z))
NTi = (Vay)(z <y — o(z) <y)
NTy, = Vay)(—(z <y) <y <x)

14
NENT = ANT;

The statements of NT are all true, and can be used to
prove a fragment of “true number theory”.
Theorem 6.1 [Papa]: Let ¢ have no variables. Then

N E @ & NT F ¢

Proof: ¢ is a boolean combination of t < ¢/, ¢t = ¢'.

Case 1: t,¢ numbers: g(g---a(0)---).
=use NT{,NT,
< use NTqp, NTq3, NT14

Case 2. t,t' use +, x, 1.
Use NTy, ..., NT, to transform these to numbers. [

Definition 15.1 A formula ¢ € L£(Xy) is bounded iff it
can be written with all quantifiers in front, and all univer-
sal quantifiers bounded. [

Example:
Ve <9)Ty)(Vz <2t (x xy)(z1T3+213#17)

Remark: If ¢(v) is bounded and has only one free
variable, v, then S, is r.e., where,
S, = {neN|NEgn)}.

Bounded sentences are not closed under negation!

They are sentences that you can check by (a) naming
numbers and (b) doing sequences of tests that are guar-
anteed to finish.

This is reminiscent of Bloop but not the same thing, be-
cause there iIs no equivalent in Bloop for the unbounded
4. A proof can name a number, but a Bloop program
can’t look for it without a limit on how far it may look.

Theorem 6.2 [Papa]: Let ¢ be a bounded sentence, i.e.,
no free variables. Then, N = & NT

QY .

Proof:

< Soundness Theorem.

= Induction on number of quantifiers in ¢.

Assume: N E .

Base case: Theorem 6.1

Inductive step: ¢ = (Jx)v.

Thus, N = o[z < n], for some n € N.
Thus, NT - ¢|x < n]

Thus, NT F ¢.

Inductive step: ¢ = (Vz < t)1.
t 1S a closed term, thus, NT ~ ¢t = n, for some n € N.

NT1,NT;;,NTyuF (z <n—z=0vVe =1V---Vx =n—1)

NiE=ylz—i, ¢=0,...,n—1

NTHylz i, i=0,...,n—1

NT - o

Definition 15.2 Let f : N* — N.
Formula ¢ ¢ represents f iff forall ny,...,ng, m € N,

f(ni,...,nx) =m & N = pr(ng,...,ngm)
A

Example: f(n)=n?+1.
Let pr(n,m) = (nxn)+1=m.

pr(n,m) & mxn)+l=m & f(n)=m

Lemma 15.3 The following primitive recursive functions:
Prime, PrimeF, IsSeq, length, and Item are each repre-
sentable by bounded formulas.

Proof:

PrimeF(n, p) asserts that p is prime number n , by assert-
Ing that there exists a number,

s = V0x3x5ExTx11tx-xp"

zly = (FTz<y+1)(z x z=1y)
DE(z,e,y) = 2°ly A 2 fy

Prime(z) = x>1 A (Vy,z < z)(y X 2 # x)

PrimeF(n,p) = (3s)(Prime(p) A 2 fs A DE(p,n,s) A
(Vg < p)(Vq' < q)(—=Prime(q) vV —Prime(q’)
V (3¢" < q)(¢" < ¢" A Prime(q"))
V (Je < q)(DE(¢’, e, s) ADE(q,e +1,))))

IsSeq(z) = (Fz < z)(Vi < x)(Ip < 21 x)(PrimeF(i, p) A
(t<z4+1Aplz) VvV (i>z+1 A —plz)))

length(z,¢) = (Jk,p,q)(I1sSeq(x) A k+1=4£¢ A PrimeF(k,p
A PrimeF(4,q) A plx A q fx)

Item(z,i,e) = (Ip)(IsSeq(z) A PrimeF(i,p) A DE(p,e+ 1,2
o

Theorem 15.4 Every primitive recursive function is rep-
resentable by a bounded formula.

Proof:

Base case: Obvious for the initial functions.

Inductive step: Composition.

f(xy,...,zr) = hlg(xy,. . Zk)y -y gm(x1, ..., xk))

By inductive assumption h and the g;’s are representable.
gpf(:ﬁ, Z) =
(Elyla s 7ym)(9091(:z7 yl)/\) '/\(,Ogm(ii', ym) A goh(yb cee s Ymy Z))

10

Inductive step: Primitive Recursion.

FO,y1, - yk) = g(y1s - -, Uk)
f(n_l_]-aylayk) — h(f(nayh“'7yk)7n7y17“'7yk)

By inductive assumption g and h are representable.
f is representable as follows,

or(@,9,2) =
(3s)(Vi < x)(da, b < s)(1sSeq(s)
A ltem(s,i,a) A ltem(s,i+ 1,b)
ANEe=0 — @,7,a))
A Sph(aaiagab) N Item(saxv Z))

11

Bloop, Floop, and Bounded Formulas

Note: In fact whenever we use an 3 quantifier in this
proof, with some more effort we could make it a bounded
3 quantifier. A function is Bloop-computable iff it is rep-
resented by a formula where both kinds of quantifiers are
bounded. (It should be pretty clear that a Bloop program
can test the truth of such a “completely bounded” for-
mula.)

A formula is Floop-computable iff it is represented by a
V-bounded formula as we have defined it here.

I’m not going to prove these assertions — all we need to
prove Godel’s theorem is that Bloop-computable (primi-
tive recursive) implies representability by a bounded for-
mula.

12

A Fact We Didn’t Prove This Time:

The primitive recursive predicate, COMP(n, x, ¢, y), mean-
Ing that ¢ is a halting computation of Turing machine M,
on input = and its output is y.

How to prove it? Write Bloop programs for PrimeF,
IsSeq, Item, and so forth. Then write a Bloop program
that interprets c as a sequence of configurations and tests
that each configuration follows from the one before ac-
cording to the rules of the machine M,,. Section 6.2 of
[P] in effect does this — I’ll just appeal to the intuition |
hope you’ve formed about Bloop.

Corollary 15.5 K is representable by a bounded formula.

0K (n) (3¢)(COMP(n, n,c, 1))
K = {n | NE ¢k(n)}

K = {n | NTF yg(n)}

13

CMPSCI 601 Summary So Far Lecture 15

7

14
NT = /\1 NT;

Definition: A formula ¢ € L(Xy) is bounded iff it can
be written with all quantifiers in front, and all universal
quantifiers bounded.

Theorem 6.2 [Papa]: Let ¢ be a bounded sentence. Then
N E @ & NT - ¢

Definition: ¢, represents f iff forall ny,... ,ng,m €
N,

f(ny,...,ng) =m & N = pr(ng,...,ngm)

Theorem: Every primitive recursive function is repre-
sentable by a bounded formula.

Corollary: K is representable by a bounded formula.

0x(n) (3¢)(COMP(n,n,c, 1))
K = {n | NE¢k(n)}

K = {n | NTF pg(n)}

14

Definition 15.6 For a structure A € STRUC[X],
Theory(A) = {pe LX) | A ¢}

Theory(N) = {p € L(XN) | NE ¢}

Thus Theory(N) is true number theory.

Theorem 15.7 (Godel’s Incompleteness Theorem) There
IS no r.e. set of sentences I" such that

1.N T, and
2. T+ Theory(N).

“There is no axiomatization of number theory, much less
all of mathematics.”

15

Proof: LetI"bere.and N =T

S = {neN|T'F-pgn)}

Sisre.and S C K.

Intuitively, S = {neN|T'FneK}

S is an r.e. subset of the non-r.e. set K. It can’t be equal

to K, and in fact it has to miss infinitely many elements.
(Since if it missed only finitely many, S plus those ele-
ments would still form an r.e. set.)

So there exist infinitely many n € N s.t.,

N = —¢x(n) and T -pgn) o

16

[P] states this result in the following form:
proves this in the form of his Theorem 6.3:

[P] Theorem 6.3: The set of unsatisfiable sentences
and the set of sentences provable from NT are recursively
Inseparable.

Thus a recursive set not only cannot separate true number
theory from false number theory, but can’t even include
all the true bounded formulas without letting in some-
thing inconsistent.

Recall that the sets { M: M outputs “yes” on e} and {M:
M outputs “no” on €} are recursively inseparable.

Look at the sentence “NT holds and there is an accepting
computation of M on €”. If M says “yes”, this is prov-
able from NT. If M says no, it is inconsistent, because it
says that the computation says “no” while NT can prove
that it says “yes”.

17

cvpscieo1: SKetch of Godel’s Original Proof Lecures

e Encode symbols as natural numbers.

e Encode formulas as finite sequences of natural num-
bers.

e Encode proofs as finite sequences of formulas.

e Let I' be a primitive recursive axiomitization of some
portion of mathematics including number theory. The
following predicates are primitive recursive and thus
first-order definable in £L(Xy).

— Formula(z): “x is the number of a formula”
— Axiom(z): “z is the number of an axiom”

— Proof(z): “z is the number of a proof”

— Theorem(z): “z is the number of a theorem”

o Let Ry, Ry, ... list all first-order formulas with one
free variable, i.e., first-order definable sets.

eletG = {n | —Theorem(R,(n))}

e G={n | R,n)} for some g

e R,(q) = —Theorem(R,(q)) = “I am not a theo-
rem”

o If R)(q) thenT' I/ R,(q); If—R,(q)thenl'F R,(q).

18

Theorem 15.8 FO-THEOREMS is r.e. complete.

Proof: We have already seen that FO-THEOREMS is
r.e..

Recall that K is represented by a bounded formula ¢ .

neK < NEowg(n) < NTFpg(n)

neK & “NT— ¢g(n)” € FO-THEOREMS

We have shown K < FO-THEOREMS, by defining f so
that:

F(n) = “NT = gic(n)”

19

