
CMPSCI 601: Summary & Conclusions Lecture 27

We’ve studied the main models and concepts of the the-
ory of computation:

� Computability: what can be computed in principle
� Logic: how can we express our requirements
� Complexity: what can be computed in practice

Problem
Mathematical

Concrete

Model

1

CMPSCI601: Models of Computation Lecture 27

� How is the input organized?
� What computational operations are allowed?
� Do we have internal memory, and how much?

An answer to these questions gives us a formal model of
computation.

Some Formal Models of Computation:

� Boolean:
� Formal Language Theory:
� First-Order Logic:
� Recursive Function Theory:
� Abstract RAM: (as in an algorithms course)

2

Boolean Computation:

Data Type: Booleans, true or false, 0 or 1

Operations: AND, OR (inclusive), NOT, can define more

Variables: Inputs ���������������
	 , others ���
�������������
Expressions: ������� ��������� �
� , etc.

Straight-Line Program:

y_1 = NOT x_1;
y_2 = y_1 OR x_2;
y_3 = x_3 AND x_4;
y_4 = y_2 AND y_3;
y_5 = y_2 OR x_1;
return NOT y_5;

A straight-line program is equivalent to a boolean circuit,
about which more later. Each line of the program (gate of
the circuit) has a truth value that is a function of the input
variables. Given a function of the inputs (a property), we
will consider among other things how long a program is
needed to compute it in this way.

3

Boolean Logic:

Chapters 1-8 of [BE] dealt with propositional or boolean
logic. The main topics were:

� Syntax and semantics for boolean expressions
� Rules for proving that an expression is a tautology or

that one expression follows logically from another
� A formal proof system encapsulating these rules and

implemented as interactive software, included with
the book

The basics of boolean logic should have been review, but
formal proof may not have been. We studied the system
from the book and software starting on HW#2. We then
considered two important properties of the system:

� Soundness: everything provable is true
� Completeness: everything true is provable

Here “everything” refers only to statements that can be
made within the system.

4

First-Order Logic:

We can think of a sequence of boolean variables ��� ���������
� 	�� �
as a single object

�
, a function from the set ��� ���������	��
 ��

to ��� ����
 . Thus for any number � in the range,
� ��� � is the

boolean variable we used to call ��� .
�

is also called a unary relation, a property that each
number in the range either has or doesn’t have. We can
also have binary, ternary, or � -ary relations.

For example, in a directed graph where the vertices are
named ��� ���������	�
 ��
 we have a binary relation � , where
the boolean � ��� ��� � is � iff there is an edge from � to � .

5

More First-Order Logic:

A first-order structure, roughly speaking, is a universe of
base objects and a set of relations over them. If one of
these relations is the input, we can use first-order logic to
define properties of the input.

For example the first-order sentence
� � ����� � � ��� � � �

is true for the graph with edge relation � iff every vertex
has out-degree at least one.

In Chapters 9-13 of [BE] we saw syntax and semantics
for first-order logic, a set of proof rules for it, and soft-
ware that lets you play with structures consisting of sets
of blocks of different types on a grid. We proved (us-
ing later chapters of [BE]) that this proof system is also
sound and complete.

6

Recursive Function Theory:

Bits can be used to represent numbers (by which I gener-
ally mean non-negative integers in binary). General com-
putations may be coded as functions from numbers (or
tuples of numbers) to numbers.

Kleene’s recursive function theory defines a set of gen-
eral recursive functions by induction. There are base
functions and rules for creating new functions from old
ones.

It turns out that “general recursive” corresponds to “algo-
rithmically computable”. (This is a theorem, not a defi-
nition.)

7

Primitive Recursion and Bloop

An important subset of the partial recursive functions is
the primitive recursive functions. We will define these in
terms of a simple programming language called Bloop.
(My Bloop is based on the language of the same name
in Hofstadter’s Gödel, Escher, Bach but has a different
syntax.)

Variables represent numbers (non-negative integers). They
are declared and initialized to 0 when they first appear.

Statements of Bloop consist of:

� assignment statements x = ...
� the increment operator ++
� function declarations and calls (call-by-value, no re-

cursion)
� bounded loops for (x) B, where x is a variable

and B is a block of code in which x is not modified.
This code executes B exactly x times.

A function is primitive recursive iff it can be implemented
by a Bloop program.

8

Relations Among The Models:

Let’s look at a single problem. Given � input bits, we
want to know whether exactly two of them are ones. This
question can be posed in each of our models:

� Boolean: There are various ways to build an SLP or
circuit, which we explored on HW#1.

� Finite-State Machine: Sweep the input string left-
to-right, remembering whether we’ve seen zero, one,
two, or more than two ones.

� First-Order Logic:

� � ����� � � ��� � � � � ��� � � � � ��� � � � � � � � � �
� Numerical Input: Is the input the sum of two dis-

tinct powers of two? On HW#1 you wrote a Bloop
program to decide this.

� Abstract RAM: The problem probably defaults to
one of the others once we decide on our data repre-
sentation.

9

CMPSCI 601: Regular Sets Lecture 27

Kleene’s Theorem: Let � � ��� be any language.
Then the following are equivalent:

1. � � � ��� � , for some DFA � .

2. � � � ��� � , for some NFA � without 	 transitions

3. � � � ��� � , for some NFA � .

4. � � � ��
 � , for some regular expression
 .
Myhill-Nerode Theorem: The language � is regular
iff � � has a finite number of equivalence classes. Fur-
thermore, this number of equivalence classes is equal to
the number of states in the minimum-state DFA that ac-
cepts � .

Pumping Lemma for Regular Sets: Let � �
��
 ��� ��� ��� � ��� � be a DFA. Let � � ��
 � . Let � � � ��� �
s.t. ��� ��� � . Then � � � ��� � � � � s.t. the following all
hold:

� � � � � �
� � �
����� �
� � ����� � , and
� � � � � � � � �! � � � �"� �

10

CMPSCI 601: CFL’s Lecture 27

Closure Theorem for Context Free Languages: Let
� ��� � � � be context-free languages, let � � � � be a
regular language, and let � � ��� � �!� and � ���!� � � �
be homomorphisms. Then the following languages are
context-free:

1. � � �
2. � �
3. � 	 �
4. � � � �
5. � � � � � �

CFL Pumping Lemma: Let � be a CFL. Then there
is a constant � , depending only on � such that if

� � �
and � � � � � , then there exist strings
 ����� � � � ��� such that�
�

� � � � , and,

� ��� � � � � ,
� ��� � � � � � , and
� for all � � N,

�! � � �� � �

11

CMPSCI 601: Recursive Sets Lecture 27

A (partial) function is recursive iff it is computed by
some TM � .

Let � � ��� ����
 � or � � N.

� is a recursive set iff the function ��� is a (total) recursive
function, where

� � � ��� �
���� ��� � if � � �
� otherwise

� is a recursively enumerable set (� is r.e.) iff the func-
tion 	 � is a (partial) recursive function, where

	
� ����� �
���� ��� � if � � ��

otherwise

Theorem: Recursive = r.e. 	 co-r.e.

12

Define the primitive recursive functions to be the smallest
class of functions that

� contains the Initial functions: � ��� , and � 	� , � � � ��� ������� ,
� � � � � , and

� is closed under Composition, and
� is closed under Primitive Recursion

Define the general recursive functions to be the smallest
class of functions that

� contains the Initial functions, and
� is closed under Composition, and
� is closed under Primitive Recursion, and
� is closed under Unbounded Mimimalization

Theorem: [Kleene] COMP ��� ��� ����� � � is a primitive
recursive predicate.

Theorem: A (partial) function is recursive iff it is
general recursive.

13

Cantor’s Theorem: � � N � is not countable!

Proof: Suppose it were. Let � � N �������	��
�� ��� N � . Define the
diagonal set,

� � ��� � �
� � ��� �

Thus � � � � � � for some � � N.

� � � � �
� � � � � � �
� �
� � Therefore, � � N � is not countable! �

� � � � � � � � � � ����� � ��� �
� 0 � � � � � � � � ����� � � � �
� � 1 � � � � � � � ����� � � � �
� � � 1 � � � � � � ����� � � � �
� � � � 1 � � � � � ����� � ��� �
� � � � � 0 � � � � ����� � ��� �
� � � � � � 0 � � � ����� � ��� �
� � � � � � � 1 � � ����� � ��� �
� � � � � � � � 0 � ����� � ��� �
� � � � � � � � � 0 ����� � ��� �
... ����� ...

� � � � � � � � � ����� �

14

CMPSCI 601: Uses of Diagonalization Lecture 27

�
� ��� � � 	 ��� � � ��

Theorem:
�

is not r.e.

Know how to prove this!

Hierarchy Theorems: Let � ��� � be a well behaved
function, and � one of DSPACE, NSPACE, DTIME, NTIME.

If � ��� � is sufficiently smaller than � ��� � then ��� ����� ��� is
strictly contained in ��� � ��� ��� .
“ � ��� � sufficiently smaller than � ��� � ” means

�	��
 	
��� ��� 	
�� � 	
� � � �	��
 	
��� ��� 	
������� ����� 	
���� � 	
� � �
� � DSPACE � NSPACE � NTIME � � DTIME

Hence P
� � � ! " #%$ � , L
� PSPACE.

But these are the only separations of classes we know!
(Except at the p.r. and above level, and for REG and
CFL).

15

Theorem: The busy beaver function is eventually
larger than any total, recursive function.

Theorem: Let � � N. T.F.A.E.

1. � is the domain of a partial, recursive function.

2. � � � or � is the range of a total, recursive function.

3. � is the range of a partial, recursive function.

4. � � � 	 , some � � � � � ��� ������� where

� 	 � ��� � � 	 ��� ��� ��

16

CMPSCI 601: Logic Lecture 27

Definitions of Formula, Structure, and Truth

Fitch Proof Rules

� Propositional (12): Intro and Elim rules for � , � , � ,
� , � , and � .

� Equality (2): Intro and Elim for � .
� Quantifier (4): Intro and Elim for � and

�
.

FO-THEOREMS � ��� ��� �

FO-VALID � ��� � � � �

17

Soundness Theorem: If � � then � � � .

FO-THEOREMS � FO-VALID

Completeness Theorem: If � � � then � � .

FO-THEOREMS � FO-VALID

Corollary:

� � � � � FO-THEOREMS � FO-VALID

Compactness Theorem: If every finite subset of �
has a model, then � has a model.

Gödel’s Incompleteness Theorem:

Theory � N � (true arithmetic) is not r.e. and thus not ax-
iomatizable. (If � is an r.e. set of axioms that are all true
in N, then there exists a formula in Theory � N � that is not
provable from � .)

18

CMPSCI 601: Complexity Classes Lecture 27

Theorem: For � ��� ��� � ��� ��� � � ����� � ,

DTIME ��� ��� ��� � NTIME ��� ��� ��� � DSPACE ��� ��� ���
DSPACE �	� ��� ��� � DTIME � �
 ��� � 	
� � �

Savitch’s Theorem:

For � ��� � � ���
� � ,

NSPACE �	� ��� ��� � ATIME ��� ��� � � � � DSPACE � ��� ��� � � � �

Immerman-Szelepcsényi Theorem:

For � ��� � � ���
� � ,

NSPACE ��� ��� ��� � co-NSPACE ��� ��� ���

19

CMPSCI 601: Reductions Lecture 27

Definition: � � � means there exists � � � � L � such
that for any � , � � � iff � ����� � � . This is also called a
logspace many-one reduction.

Theorem: Let � be one of the following complex-
ity classes: L, NL, P, NP, co-NP, PSPACE, EXPTIME,
Primitive-Recursive, RECURSIVE, r.e., co-r.e.

Suppose � � � .

If � � � Then � � �

All these complexity classes are closed downward un-
der reductions.

Lower Bounds: If � is hard then � is hard.

Upper Bounds: If � is easy then � is easy.

20

CMPSCI 601: Complete Problems Lecture 27

Complete for NL: REACH, EMPTY-DFA, EMPTY-
NFA, 2-SAT

Complete for P: CVP, MCVP, EMPTY-CFL, Horn-
SAT, REACH �

Complete for NP: TSP, SAT, 3-SAT, 3-COLOR,
CLIQUE, Subset Sum, Knapsack

Complete for PSPACE: QSAT, GEOGRAPHY,
SUCCINCT-REACH, REG-EXP- � �

Complete for r.e.:
�

, HALT, � ��� ��� , FO-VALID

Complete for co-r.e.:
�

, ��� CFL, EMPTY, FO-SAT

21

CMPSCI 601: Descriptive Complexity Lecture 27

Theorem:

r.e. � FO ��� N �
co-r.e. � FO

� � N �

PH � SO

NP � SO �

P � SO � -Horn

AC � � CRAM � � � � LH � FO

One can understand the complexity of a problem as the
richness of a logical language that is needed to describe
the problem.

22

CMPSCI 601: Alternation Lecture 27

Theorem: For � ��� � � ����� � , and for � ��� ��� � ,
� �
 �� �

ATIME � � � ��� � � � � � �
 �� �

DSPACE � � � ��� � � �

ASPACE �	� ��� ��� � � �
 �� �

DTIME � � � � 	
� �

Corollary: In particular,

ASPACE � ���
� � � � P

ATIME � �
 � ��� � � PSPACE

ASPACE � �
 � ��� � � EXPTIME

23

CMPSCI 601: Circuit Complexity Lecture 27

depth � parallel time

width � hardware

number of gates � computational work � sequential time

Theorem: For all � , CRAM � � ���
� � � � � � AC �

AC � � ThC � � NC � � L � NL � sAC � �
AC � � ThC � � NC � � sAC � �

... � ... � ... � ... �
AC � � ThC � � NC ��� � � sAC ��� � �

... � ... � ... � ... �
NC � NC � NC � NC �

NC � P � NP

24

Alternation/Circuit Theorem:

Log-space ATM’s with:

� � � ����� � � � time give NC �
(� � �)

� � � ����� � � � alternations give AC �
(� � �)

Alternating TM’s are one good way to design uniform
families of circuits. We used this method to prove
� ��� � sAC �

.

First-order logic gives us another way to design uniform
families of circuits. We’ve used this to construct AC �
circuits by showing a problem to be in FO.

We need uniformity definitions on our circuit classes to
relate them to ordinary classes. For example, poly-size
circuit families compute languages in P only if they are
at least P-uniform.

25

Theorem: PRIME and Factoring are in NP 	 co-NP.
(PRIME is now in P as well.)

Theorem: [Solovay-Strassen, Miller]

PRIME � BPP

Fact: REACH � � BPL

Interactive Proofs

=P

NP

BPP

MA AM AM[poly] = IP = PSPACE

BP(NP)

Fact: PCP[
����� � ���] = NP

26

CMPSCI 601: Optimization Lecture 27

� is an optimization problem iff

For each instance � , � � ��� is the set of feasible solutions

Each � � � � ��� has a cost � ��� � � Z �

For minimization problems,

OPT ��� � �

 ���

�
��� � � �

� ��� �

For maximization problems,

OPT ��� � �

 ���

�
��� � � �

� ��� �

Let � be an algorithm s.t. on any instance � ,

� ��� � � � ��� �
� is an 	 -approximation algorithm iff for all � ,

� � � � ����� �
 OPT ����� �
 ��� � OPT ��� � ����� � ����� � � � 	 �

27

exists P approx alg for

ε

poly in n, 1/ε

ε

some but not all

< 1

all

< 1

< 1

no ε

APPROX

P

FPTAS Knapsack

PTAS ETSP

TSPClique

∆TSPMAX SATVertexCover

INAPPROX

28

co-r.e.
complete

Arithmetic Hierarchy
FO (N)

FO

E

(N)FO

A

(N)

r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP

NP

U

co-NP

P

NC 2

log(CFL)

SO-Horn

A SO

E

SO

SO

NC

NC

SAC

ThC

"truly feasible"

Regular

0

NSPACE[log n]

Logarithmic-Time HierarchyFO AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

29

CMPSCI 601: Where’s the Catch? Lecture 27

Why are the following so hard to prove?

� P
� NP
� P
� PSPACE
� ThC �
� NP
� BPP � P

We do know a lot about computation. Reductions and
complete problems are a key tool. So is the equivalence
of apparently different models and methods. Yet much
remains unknown.

30

