
CMPSCI 601: Recall From Last Time Lecture 20

Finite Model Theory / Descriptive Complexity:

Theorem: FO
�

L � DSPACE �������
	��

Fagin’s Theorem: NP � SO .

� � � � � � � bin � � ��� � �

� � ���� ���� ��� � � ���!#"�$&% � � �('*)+ ��,
,

is quantifier-free.

1

Space
0 1)� 	 � � 	 	 � � � %

Time
� ��� ���	� ��
 � $ � � � �� "�$ � ��� � � � �
� � � ��� $ �	� $
 � � � �� "�$ � ��� � � � $

...
)� � "�$ � � � $ ���

)��� � � � ��� $
...

	 � � � ����� � �
 � � � � � � ��� � �

Accepting computation of � on input � ��� $ ��� � ��� " $

2

Theorem 20.1 (Cook-Levin Theorem)

SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve
Cook in the USA and Leonid Levin in the USSR, before
Fagin proved his theorem. We’ll prove Cook-Levin as a
corollary of Fagin’s Theorem, somewhat contrary to his-
tory. But note that the proof of Cook-Levin in Sipser, for
example, is almost the same as our proof of Fagin.)

Proof: Let � � NP. By Fagin’s theorem,

� � � � � � � � ���
� � � � ���� ����� � ���!#" $ % � � � ' + $ � � � + � ��, �)+ �

with
,

quantifier-free and CNF,

, �)+ � � ���	� $�
 � �)+
�

with each
 � a disjunction of literals.

3

Let
�

be arbitrary, with 	 � � � � � �
.

Define a boolean formula � � � �
as follows:

boolean variables:

��� ��� $ ������� � � ���
� � % ��� $ ��������� � �

� � 	 � � ����������
 � � $ ������� � � ��� �
��� �

clauses:

 � �)�
� � � � � ������� �� �)� � ��� � �

�� �)� � is
 � �)�

�
with atomic numeric or input predicates,� �)� � , replaced by true or false according as they are true

or false in
�

. Occurrences of � � �)� � , and % �)� � are consid-
ered boolean variables.

� � � �� ���� � � � � ���!#" $ % � � � ' + $ ��� � + � � ���	� $
 � �)+
�

� � � � � �
�������������������! #"$ ���	� $

�� �)� �

� � � � � � � � � � � � � � SAT %

4

Proposition 20.2

3-SAT � � � � CNF-SAT
� � has

� �
literals per clause �

3-SAT is NP-complete.

Proof: Show SAT
�

3-SAT.

Example:

� � ��� $�� � � � ����� � ��� �

� � � ��� $ � � � � 	 $ �
 � 	 $ � ��� � 	 �
�
 � 	 � � �� � 	 � �

� 	 � � ��� � 	 �
 � 	 � ��� � � � �

Claim: � � SAT � � � � 3-SAT

In general, just do this construction for each clause in-
dependently, introducing separate dummy variables for
each cluase. The AND of all the new 3-variable clauses
is satisfiable iff the AND of all the old clauses is. %

5

What about reducing 3-SAT to SAT?

Can we do it?

Easily! The identity function serves as a reduction, be-
cause every 3-SAT instance is also a SAT instance with
the same answer. This is an example of the general phe-
nomenon of one problem being a special case of another.
Here’s another example:

Definition 20.3 A graph is levelled if its nodes are la-
belled with integers and every edge from a vertex la-
belled 	 goes to a vertex labelled 	 � � . The problem
LEVELLED-REACH is the set of levelled graphs such
that there is a path from � to

�
. %

Proposition 20.4 LEVELLED-REACH is complete for
NL under log-space reductions.

Proof: LEVELLED-REACH is a special case of REACH
and so clearly LEVELLED-REACH

�
REACH. We’ll

see the other direction below. %

6

But what does it prove to reduce 3-SAT to SAT?

Not much – only the fact that 3-SAT is in NP or that
LEVELLED-REACH is in NL, neither of which was hard
to prove anyway. To prove that a special case of a general
problem is complete for some class, we have two options:

1. Reduce the general problem to the specific one, or

2. Show that the completeness proof for the general case
can be adapted to always yield an instance of the spe-
cial case

For example, with LEVELLED-REACH the first method
would be to reduce REACH to LEVELLED-REACH di-
rectly. This can be done by taking the arbitrary directed
graph � and making a new levelled graph out of 	 copies
of � , with an edge from ��� ��	 � to ��� ��	 � � � whenever ��� � � �
is an edge of � .

The second method would be to show that when we map
an arbitrary NL problem to a REACH instance, we can
make sure that we get a LEVELLED-REACH instance.
(If we put a clock on the TM’s worktape, for example,
the configuration graph becomes levelled with the clock
value as the level number.)

7

Proposition 20.5 3-COLOR is NP-complete.

Proof: Show 3-SAT
�

3-COLOR.

� � � $
 � �

 �����
 � � � 3-CNF

VAR � � � � � + $ � + � ������� �
+ � �

Must build graph � � � �
s.t.

� � 3-SAT � � � � � � 3-COLOR

Working assumption: 3-SAT requires ���
�

time.

8

x x

G

G

a1
d1

b1

e1

c1

f1

t

x x

x x

x x

T F

R

1
2

3

n

1

n

1

2

3

a
d

e

c

f

b

t

t

t

t

t

t

� $ encodes clause � $ � � + $ � +
� �

+ � �

Claim: Triangle
� $ � � $ � 	 $ serves as an “or”-gate:

	 $ may be colored “true” iff at least one of its inputs+ $ � + � is colored “true”. Similarly, the output � $ may be
colored “true” iff at least one of 	 $ and the third input, + �
is colored “true”.

� � can only be colored “true”.

A three coloring of the literals can be extended to color
� � iff the corresponding truth assignment makes � � true.
%

9

Proposition 20.6 CLIQUE is NP-complete.

Proof:

Show SAT
�

CLIQUE.

� � � $
 � �

 �����
 � � � CNF

VAR � � � � � + $ � + � ������� �
+ � �

Must build graph
 � � �
s.t.

� � SAT �
 � � � � CLIQUE

� � � + $ ������� � + � � + $ ��������� + � ��� � � ��� $ ��������� � � �

 � � � � ��� !��
	�� �� !���	�� ��� !��
	�� �

� !���	�� � � � � � ��� � � � �
 !���	�� � � � � � $ � � $
 � � � � � � �

� � � $��� � � and � $��� � � �
�

� � � � � � � � �
 � � � � � � �
 �	� � � � � occurs in � �
� !���	�� � � � �

10

t

C1

C

C

2

1x 1x x x x x2 2 n n

w0

 � � � � � $ � � + $ � +
� �

+ � �

� !���	�� � � � � � ��� � � � �
 !���	�� � � � � � $ � � $
 � � � � � � �

� � � $��� � � and � $��� � � �
�

� � � � � � � � �
 � � � � � � �
 �	� � � � � occurs in � �
� !���	�� � � � �

11

� !���	�� � � � � � ��� � � � �
 !���	�� � � � � � $ � � $
 � � � � � � �

� � � $��� � � and � $��� � � �
�

� � � � � � � � �
 � � � � � � �
 �	� � � � � occurs in � �
� !���	�� � � � �

� � � SAT
� � �
 � � � � CLIQUE

�

Claim:
 � � � L �

12

Proposition 20.7 Subset Sum is NP-Complete.

��� $ ������� � �
�
�
 � N ���� � �� � � � ������� � � � ���� �	�

� � �

��

Show 3-SAT
�

Subset Sum.

� � � $
 � �

 � ���
 � � � 3-CNF

VAR � � � � � + $ � + � ������� �
+ � �

Build � � � � L �
such that for all � ,

� � 3-SAT � � � � � � Subset Sum

13

+ $ +
� � � � + � � $ � � � ��� � �

 1 1 � � � 1 3 3 ����� 3
+ $ 1 0 � � � 0 1 0 ����� 1 � $ � � + $ � +

� �
+ � �

+ $ 1 0 � � � 0 0 1 ����� 0

+
� 0 1 � � � 0 0 1 ����� 1 � � � � + $ � +

� �
+ � �

+
� 0 1 � � � 0 1 0 ����� 0

... � � � � ��� ... � � � � + $�� +
� �

+ � �
+ � 0 0 � � � 1 0 1 ����� 0
+ � 0 0 � � � 1 0 0 ����� 1
� $ 0 0 � � � 0 1 0 ����� 0

� $ 0 0 � � � 0 1 0 ����� 0
�
� 0 0 � � � 0 0 1 ����� 0

� � 0 0 � � � 0 0 1 ����� 0

... � � � � ��� ...
� � 0 0 � � � 0 0 0 ����� 1

� � 0 0 � � � 0 0 0 ����� 1

14

Knapsack

Given 	 objects:

object � $ � � � ��� � �
weight � $ � � � ��� ��� � �

value � $ � � � ��� � �
�

= max weight I can carry in my knapsack.

Optimization Problem:

choose � � � � ������� � 	 �
to maximize �� �	� � �
such that �� �	� � � � �

Decision Problem:

Given)� �)� � � � � , can I get total value � � while total
weight is

� �
?

15

Proposition 20.8 Knapsack is NP-Complete.

Proof: Let � � � � $ ������� � � �

 be an instance of Subset
Sum.

Problem: � �� � � � � ������� � 	 � ��� �� �	�
� � �
��

Let � ��� � � � � $ ������� � � � � $ ������� � � � �
 �

 be an instance
of Knapsack.

Claim: � � Subset Sum � � ��� � � Knapsack

� � � � � ������� � 	 � ��� �� �	�
� � �
��

�
� �� � � � ������� � 	 � ��� �� �	�

� � �

 �� �	�

� � �

	� %

Fact 20.9 Even though Knapsack is NP-Complete there
is an efficient dynamic programming algorithm that can
closely approximate the maximum possible � .

16

