CMPSCI 601: Recall From Last Time

Lecture 20

Finite Model Theory / Descriptive Complexity:

Theorem: FO C L = DSPACE]|logn]
Fagin’s Theorem: NP = SO4.
AE® & N(bin(4) =1

® = (3CF---CH A (VT
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Theorem 20.1 (Cook-Levin Theorem)
SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve
Cook in the USA and Leonid Levin in the USSR, before
Fagin proved his theorem. We’ll prove Cook-Levin as a
corollary of Fagin’s Theorem, somewhat contrary to his-
tory. But note that the proof of Cook-Levin in Sipser, for
example, is almost the same as our proof of Fagin.)

Proof. Let B € NP. By Fagin’s theorem,

B={A]|AkEo

® = (3C3 - O AV ) (a)

with v quantifier-free and CNF,

with each 77 a disjunction of literals.



Let A be arbitrary, with n = ||.A].

Define a boolean formula ¢(.A) as follows:

boolean variables:

Ciler,...,exn), Aler, ..., er), i=1,...,9,€1,...,e € |A

clauses:
Ti(e), j=1,...,recl|Al

T7(e) is Tj(e) with atomic numeric or input predicates,
R(e), replaced by true or false according as they are true
or false in A. Occurrences of C;(¢), and A(e) are consid-
ered boolean variables.
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Proposition 20.2
3-SAT = {p € CNF-SAT | ¢ has < 3 literals per clause}

3-SAT Is NP-complete.

Proof: Show SAT < 3-SAT.

Example:

C = (UiVLV VL)

C'= (U1 VUl Vd) A (di VAV dy) A (dy V Ly V d3) A
(ds V U5 V ds) A (do V Lg V £7)

Claim: C € SAT & C' € 3-SAT

In general, just do this construction for each clause in-
dependently, introducing separate dummy variables for
each cluase. The AND of all the new 3-variable clauses
Is satisfiable iff the AND of all the old clauses is. [



What about reducing 3-SAT to SAT?
Can we do it?

Easily! The identity function serves as a reduction, be-
cause every 3-SAT instance is also a SAT instance with
the same answer. This is an example of the general phe-
nomenon of one problem being a special case of another.
Here’s another example:

Definition 20.3 A graph is levelled if its nodes are la-
belled with integers and every edge from a vertex la-
belled 7 goes to a vertex labelled 7 + 1. The problem
LEVELLED-REACH is the set of levelled graphs such
that there is a path from s to ¢. [

Proposition 20.4 LEVELLED-REACH is complete for
NL under log-space reductions.

Proof: LEVELLED-REACH is a special case of REACH
and so clearly LEVELLED-REACH < REACH. We’ll
see the other direction below. [



But what does it prove to reduce 3-SAT to SAT?

Not much — only the fact that 3-SAT is in NP or that
LEVELLED-REACH is in NL, neither of which was hard
to prove anyway. To prove that a special case of a general
problem is complete for some class, we have two options:

1. Reduce the general problem to the specific one, or

2. Show that the completeness proof for the general case
can be adapted to always yield an instance of the spe-
cial case

For example, with LEVELLED-REACH the first method
would be to reduce REACH to LEVELLED-REACH di-
rectly. This can be done by taking the arbitrary directed
graph GG and making a new levelled graph out of n copies
of G, with an edge from (u, ¢) to (v, i+1) whenever (u, v)
IS an edge of G.

The second method would be to show that when we map
an arbitrary NL problem to a REACH instance, we can
make sure that we get a LEVELLED-REACH instance.
(If we put a clock on the TM’s worktape, for example,
the configuration graph becomes levelled with the clock
value as the level number.)



Proposition 20.5 3-COLOR is NP-complete.
Proof: Show 3-SAT < 3-COLOR.

o = O, ANCy A---ANC, € 3CNF

VAR(p) = Az, 29,...,2,}

Must build graph G(¢) s.t.

p€3-SAT <  G(yp) €3-COLOR

Working assumption: 3-SAT requires 2" time.



(1 encodes clause C; = (71 V 22 V T3)

Claim: Triangle a4, b1, d; serves as an “or’-gate:

d; may be colored “true” iff at least one of its inputs
T1, x2 1S colored “true”. Similarly, the output f; may be
colored “true” iff at least one of d; and the third input, =3
IS colored “true”.

f; can only be colored “true”.

A three coloring of the literals can be extended to color
G; Iff the corresponding truth assignment makes C; true.

A



Proposition 20.6 CLIQUE is NP-complete.

Proof:
Show SAT < CLIQUE.

¢ = Ci ANCyN---NC, € CNF

VAR(p) = Az, 29,...,2,}

Must build graph g(¢) s.t.

p€SAT <  g¢(p) € CLIQUE
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V9@ = (C x L) U {wy}

Eg(go) = {(<Cl,€1>, <Cg,£2>) | C1 7£ Co and ?1 3’5 62} U
{(wo, (c,£)), ({c,£),wp) | £occursin c}

B9 = t4+1

(p € SAT) < (g(p) € CLIQUE)

Claim: ¢ € F(L)
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Proposition 20.7 Subset Sum is NP-Complete.
{mi,...,m,, T € N | (HSQ{l,...,r})(_ZSmZ- = T)}
(AS

Show 3-SAT < Subset Sum.

p=C ANCy A~ NC; € 3-CNF
VAR(p) = {z1,22,...,2,}

Build f € F'(L) such that for all ¢,

@ € 3-SAT & f(¢) € Subset Sum
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Knapsack

Given n objects:

object | 01 09 -+ o,
weight | wy wy -+ w, | >0
value | vy v9 --- w,

W = max weight | can carry in my knapsack.

Optimization Problem:
choose S C {1,...,n}
to maximize ¥ v,
€S
suchthat > w; < W
€S
Decision Problem:

Given w, v, W, V, can | get total value > V while total
weight is < W?
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Proposition 20.8 Knapsack is NP-Complete.

Proof: Let I = (m,...m,,T) be an instance of Subset
Sum.

Problem: (3?25 C{1,...,n})(Xm; = T)

1€S

Let f(I) = (my,...my,mq,...,my, T, T) bean instance
of Knapsack.

Claim: I € Subset Sum & f(I) € Knapsack

Fact 20.9 Even though Knapsack is NP-Complete there
Is an efficient dynamic programming algorithm that can
closely approximate the maximum possible V.
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