CMPSCI 601:

Recall From Last Time

Finite Model Theory / Descriptive Complexity:

Theorem: FO \subseteq L = DSPACE[log n]

Fagin's Theorem: $NP = SO\exists$.

$$\mathcal{A} \models \Phi \quad \Leftrightarrow \quad N(\operatorname{bin}(\mathcal{A})) = 1$$

$$\Phi = (\exists C_0^{2k} \cdots C_{q-1}^{2k} \Delta^k) (\forall \bar{x}) \psi$$

 ψ is quantifier-free.

	Space						
	0	1	\overline{S}	n-1	n	$n^{k} - 1$	Δ
Time 0	$\langle q_0, w_0 angle$	w_1	• • •	w_{n-1}	□ ···		δ_0
1	w_0	$\langle q_1, w_1 angle$	• • •	w_{n-1}	\Box	${\color{black} \sqcup}$	δ_1
	• •	•	•		• •		:
$ar{t}$			$a_{-1} a_0 a_1$				δ_t
$\overline{t} + 1$			b				δ_{t+1}
	• • •	•	:		•		:
$n^{k} - 1$	$\langle q_f,1 angle$		• • •	\Box	\Box	\Box	

Accepting computation of N on input $w_0 w_1 \cdots w_{n-1}$

Theorem 20.1 (Cook-Levin Theorem)

SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve Cook in the USA and Leonid Levin in the USSR, *before* Fagin proved his theorem. We'll prove Cook-Levin as a corollary of Fagin's Theorem, somewhat contrary to history. But note that the proof of Cook-Levin in Sipser, for example, is almost the same as our proof of Fagin.)

Proof: Let $B \in \mathbf{NP}$. By Fagin's theorem,

 $B = \{ \mathcal{A} \mid \mathcal{A} \models \Phi \}$ $\Phi = (\exists C_0^{2k} \cdots C_{g-1}^{2k} \Delta^k) (\forall x_1 \cdots x_t) \psi(\bar{x})$

with ψ quantifier-free and CNF,

$$\psi(\bar{x}) \quad = \quad \bigwedge_{j=1}^r T_j(\bar{x})$$

with each T_j a disjunction of literals.

Let \mathcal{A} be arbitrary, with $n = \|\mathcal{A}\|$.

Define a boolean formula $\varphi(\mathcal{A})$ as follows:

boolean variables:

 $C_i(e_1,\ldots,e_{2k}), \Delta(e_1,\ldots,e_k), \qquad i=1,\ldots,g, e_1,\ldots,e_{2k} \in |\mathcal{A}|$

clauses:

$$T_j(\bar{e}), \quad j=1,\ldots,r, \bar{e} \in |\mathcal{A}|^t$$

 $T'_{j}(\bar{e})$ is $T_{j}(\bar{e})$ with atomic numeric or input predicates, $R(\bar{e})$, replaced by **true** or **false** according as they are true or false in \mathcal{A} . Occurrences of $C_{i}(\bar{e})$, and $\Delta(\bar{e})$ are considered boolean variables.

$$\Phi \equiv (\exists C_0^{2k} \cdots C_{g-1}^{2k} \Delta^k) (\forall x_1 \cdots x_t) \bigwedge_{j=1}^r T_j(\bar{x})$$
$$\varphi(\mathcal{A}) \equiv \bigwedge_{e_1, \dots, e_t \in |\mathcal{A}|} \bigwedge_{j=1}^r T'_j(\bar{e})$$

 $\mathcal{A} \in B \qquad \Leftrightarrow \qquad \mathcal{A} \models \Phi \qquad \Leftrightarrow \qquad \varphi(\mathcal{A}) \in \mathsf{SAT} \clubsuit$

Proposition 20.2

3-SAT = { $\varphi \in \text{CNF-SAT} \mid \varphi \text{ has } \leq 3 \text{ literals per clause}$ }

3-SAT is **NP**-complete.

Proof: Show SAT \leq 3-SAT.

Example:

$$C = (\ell_1 \lor \ell_2 \lor \cdots \lor \ell_7)$$

 $C' \equiv (\ell_1 \lor \ell_2 \lor d_1) \land (\overline{d_1} \lor \ell_3 \lor d_2) \land (\overline{d_2} \lor \ell_4 \lor d_3) \land (\overline{d_3} \lor \ell_5 \lor d_4) \land (\overline{d_4} \lor \ell_6 \lor \ell_7)$

Claim: $C \in SAT$ \Leftrightarrow $C' \in 3-SAT$

In general, just do this construction for each clause independently, introducing separate dummy variables for each cluase. The AND of all the new 3-variable clauses is satisfiable iff the AND of all the old clauses is. What about reducing 3-SAT to SAT?

Can we do it?

Easily! The *identity function* serves as a reduction, because every 3-SAT instance is also a SAT instance with the same answer. This is an example of the general phenomenon of one problem being *a special case* of another. Here's another example:

Definition 20.3 A graph is *levelled* if its nodes are labelled with integers and every edge from a vertex labelled i goes to a vertex labelled i + 1. The problem *LEVELLED-REACH* is the set of levelled graphs such that there is a path from s to t.

Proposition 20.4 LEVELLED-REACH is complete for **NL** under log-space reductions.

Proof: LEVELLED-REACH is a special case of REACH and so clearly LEVELLED-REACH \leq REACH. We'll see the other direction below.

But what does it prove to reduce 3-SAT to SAT?

Not much – only the fact that 3-SAT is in **NP** or that LEVELLED-REACH is in **NL**, neither of which was hard to prove anyway. To prove that a special case of a general problem is complete for some class, we have two options:

- 1. Reduce the general problem to the specific one, or
- 2. Show that the completeness proof for the general case can be adapted to always yield an instance of the special case

For example, with LEVELLED-REACH the first method would be to reduce REACH to LEVELLED-REACH directly. This can be done by taking the arbitrary directed graph G and making a new levelled graph out of n copies of G, with an edge from (u, i) to (v, i+1) whenever (u, v)is an edge of G.

The second method would be to show that when we map an arbitrary **NL** problem to a REACH instance, we can make sure that we get a LEVELLED-REACH instance. (If we put a clock on the TM's worktape, for example, the configuration graph becomes levelled with the clock value as the level number.) Proposition 20.5 3-COLOR is NP-complete.

Proof: Show $3\text{-}SAT \leq 3\text{-}COLOR$.

 $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_t \in 3\text{-CNF}$

$$VAR(\varphi) = \{x_1, x_2, \dots, x_n\}$$

Must build graph $G(\varphi)$ s.t.

 $\varphi \in 3\text{-SAT} \quad \Leftrightarrow \quad G(\varphi) \in 3\text{-COLOR}$

Working assumption: 3-SAT requires $2^{\epsilon n}$ time.

 G_1 encodes clause $C_1 = (\overline{x_1} \lor x_2 \lor \overline{x_3})$

Claim: Triangle a_1, b_1, d_1 serves as an "or"-gate:

 d_1 may be colored "true" iff at least one of its inputs $\overline{x_1}, x_2$ is colored "true". Similarly, the output f_1 may be colored "true" iff at least one of d_1 and the third input, $\overline{x_3}$ is colored "true".

 f_i can only be colored "true".

A three coloring of the literals can be extended to color G_i iff the corresponding truth assignment makes C_i true.

Proposition 20.6 CLIQUE is NP-complete.

Proof:

Show SAT \leq CLIQUE.

10

$$egin{aligned} V^{g(arphi)} &= \ (C imes L) \cup \{w_0\} \ & E^{g(arphi)} &= \ \{(\langle c_1, \ell_1
angle, \langle c_2, \ell_2
angle) \mid \ c_1
eq c_2 ext{ and } \overline{\ell}_1
eq \ell_2\} \ & \cup \ & \{(w_0, \langle c, \ell
angle), (\langle c, \ell
angle, w_0) \mid \ \ell ext{ occurs in } c\} \ & k^{g(arphi)} &= t+1 \end{aligned}$$

$$\begin{split} V^{g(\varphi)} &= (C \times L) \cup \{w_0\} \\ E^{g(\varphi)} &= \{(\langle c_1, \ell_1 \rangle, \langle c_2, \ell_2 \rangle) \mid c_1 \neq c_2 \text{ and } \overline{\ell}_1 \neq \ell_2\} \cup \\ \{(w_0, \langle c, \ell \rangle), (\langle c, \ell \rangle, w_0) \mid \ell \text{ occurs in } c\} \\ k^{g(\varphi)} &= t+1 \end{split}$$

 $(\varphi \in \mathsf{SAT}) \quad \Leftrightarrow \quad (g(\varphi) \in \mathsf{CLIQUE})$

Claim: $g \in F(\mathbf{L})$

Proposition 20.7 Subset Sum is NP-Complete.

 $\{m_1,\ldots,m_r,T \in \mathbf{N} \mid (\exists S \subseteq \{1,\ldots,r\})(\sum_{i\in S} m_i = T)\}$

Show $3\text{-}SAT \leq Subset Sum$.

$$\varphi \equiv C_1 \wedge C_2 \wedge \cdots \wedge C_t \in 3\text{-CNF}$$

VAR $(\varphi) = \{x_1, x_2, \dots, x_n\}$

Build $f \in F(\mathbf{L})$ such that for all φ ,

$$\varphi \in 3\text{-SAT} \quad \Leftrightarrow \quad f(\varphi) \in \text{ Subset Sum}$$

	x_1	x_2	•••	x_n	C_1	C_2	• • •	C_t	
T	1	1	• • •	1	3	3	•••	3	
x_1	1	0	•••	0	1	0	• • •	1	$C_1 = (x_1 \lor \overline{x_2} \lor x_3)$
$\overline{x_1}$	1	0	•••	0	0	1	•••	0	
x_2	0	1	• • •	0	0	1	•••	1	$C_2 = (\overline{x_1} \lor x_2 \lor x_n)$
$\overline{x_2}$	0	1	•••	0	1	0	• • •	0	
:	:	:	•••	:	:	•	•••	•••	$C_t = (x_1 \lor x_2 \lor \overline{x_n})$
x_n	0	0	•••	1	0	1	•••	0	
$\overline{x_n}$	0	0	•••	1	0	0	•••	1	
a_1	0	0	•••	0	1	0	• • •	0	
b_1	0	0	•••	0	1	0	•••	0	
a_2	0	0	•••	0	0	1	• • •	0	
b_2	0	0	•••	0	0	1	• • •	0	
•	•	•	•••	:	•	•	• • •	•	
a_t	0	0	•••	0	0	0	•••	1	
b_t	0	0	•••	0	0	0	• • •	1	

Knapsack

Given n objects:

object	<i>o</i> ₁	<i>O</i> ₂	•••	<i>0</i> _{<i>n</i>}	
weight	w_1	w_2	•••	w_n	≥ 0
value	v_1	v_2	•••	v_n	

 $W = \max$ weight I can carry in my knapsack.

Optimization Problem:

choose $S \subseteq \{1, ..., n\}$ to maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i \leq W$

Decision Problem:

Given $\overline{w}, \overline{v}, W, V$, can I get total value $\geq V$ while total weight is $\leq W$?

Proposition 20.8 *Knapsack is* **NP**-*Complete.*

Proof: Let $I = \langle m_1, \dots, m_n, T \rangle$ be an instance of Subset Sum.

Problem: $(\exists ?S \subseteq \{1, \ldots, n\}) (\sum_{i \in S} m_i = T)$

Let $f(I) = \langle m_1, \dots, m_n, m_1, \dots, m_n, T, T \rangle$ be an instance of Knapsack.

Fact 20.9 Even though Knapsack is **NP**-Complete there is an efficient dynamic programming algorithm that can closely approximate the maximum possible V.