Finite Model Theory / Descriptive Complexity:

Theorem: \quad FO $\subseteq \mathbf{L}=\mathbf{D S P A C E}[\log n]$

Fagin's Theorem: $\quad \mathbf{N P}=\mathrm{SO} \exists$.

$$
\begin{aligned}
\mathcal{A} & =\Phi \quad \Leftrightarrow \quad N(\operatorname{bin}(\mathcal{A}))=1 \\
\Phi & =\left(\exists C_{0}^{2 k} \cdots C_{g-1}^{2 k} \Delta^{k}\right)(\forall \bar{x}) \psi
\end{aligned}
$$

ψ is quantifier-free.

Accepting computation of N on input $w_{0} w_{1} \cdots w_{n-1}$

Theorem 20.1 (Cook-Levin Theorem)

SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve Cook in the USA and Leonid Levin in the USSR, before Fagin proved his theorem. We'll prove Cook-Levin as a corollary of Fagin's Theorem, somewhat contrary to history. But note that the proof of Cook-Levin in Sipser, for example, is almost the same as our proof of Fagin.)
Proof: Let $B \in \mathbf{N P}$. By Fagin's theorem,

$$
\begin{aligned}
B & =\{\mathcal{A} \mid \mathcal{A}=\Phi\} \\
\Phi & =\left(\exists C_{0}^{2 k} \cdots C_{g-1}^{2 k} \Delta^{k}\right)\left(\forall x_{1} \cdots x_{t}\right) \psi(\bar{x})
\end{aligned}
$$

with ψ quantifier-free and CNF,

$$
\psi(\bar{x})=\bigwedge_{j=1}^{r} T_{j}(\bar{x})
$$

with each T_{j} a disjunction of literals.

Let \mathcal{A} be arbitrary, with $n=\|\mathcal{A}\|$.

Define a boolean formula $\varphi(\mathcal{A})$ as follows:
boolean variables:
$C_{i}\left(e_{1}, \ldots, e_{2 k}\right), \Delta\left(e_{1}, \ldots, e_{k}\right), \quad i=1, \ldots, g, e_{1}, \ldots, e_{2 k} \in|\mathcal{A}|$
clauses:

$$
T_{j}(\bar{e}), \quad j=1, \ldots, r, \bar{e} \in|\mathcal{A}|^{t}
$$

$T_{j}^{\prime}(\bar{e})$ is $T_{j}(\bar{e})$ with atomic numeric or input predicates, $R(\bar{e})$, replaced by true or false according as they are true or false in \mathcal{A}. Occurrences of $C_{i}(\bar{e})$, and $\Delta(\bar{e})$ are considered boolean variables.

$$
\begin{aligned}
\Phi \equiv & \equiv\left(\exists C_{0}^{2 k} \cdots C_{g-1}^{2 k} \Delta^{k}\right)\left(\forall x_{1} \cdots x_{t}\right) \wedge_{j=1}^{r} T_{j}(\bar{x}) \\
\varphi(\mathcal{A}) \equiv & \wedge_{e_{1}, \ldots, e_{t} \in|\mathcal{A}|}^{\wedge_{j=1}^{r} T_{j}^{\prime}(\bar{e})} \\
\mathcal{A} \in B \quad & \Leftrightarrow \quad \mathcal{A} \models \Phi \quad \Leftrightarrow \quad \varphi(\mathcal{A}) \in \operatorname{SAT} \wedge
\end{aligned}
$$

Proposition 20.2

3-SAT $=\{\varphi \in \mathrm{CNF}-\mathrm{SAT} \mid \varphi$ has ≤ 3 literals per clause $\}$ 3-SAT is NP-complete.

Proof: Show SAT $\leq 3-$ SAT.

Example:

$$
C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{7}\right)
$$

$$
\begin{gathered}
C^{\prime} \equiv\left(\ell_{1} \vee \ell_{2} \vee d_{1}\right) \wedge\left(\overline{d_{1}} \vee \ell_{3} \vee d_{2}\right) \wedge\left(\overline{d_{2}} \vee \ell_{4} \vee d_{3}\right) \wedge \\
\left(\overline{d_{3}} \vee \ell_{5} \vee d_{4}\right) \wedge\left(\overline{d_{4}} \vee \ell_{6} \vee \ell_{7}\right)
\end{gathered}
$$

Claim: $\quad C \in \mathrm{SAT} \quad \Leftrightarrow \quad C^{\prime} \in 3$-SAT
In general, just do this construction for each clause independently, introducing separate dummy variables for each cluase. The AND of all the new 3-variable clauses is satisfiable iff the AND of all the old clauses is.

What about reducing 3-SAT to SAT?

Can we do it?

Easily! The identity function serves as a reduction, because every 3-SAT instance is also a SAT instance with the same answer. This is an example of the general phenomenon of one problem being a special case of another. Here's another example:

Definition 20.3 A graph is levelled if its nodes are labelled with integers and every edge from a vertex labelled i goes to a vertex labelled $i+1$. The problem LEVELLED-REACH is the set of levelled graphs such that there is a path from s to t.

Proposition 20.4 LEVELLED-REACH is complete for NL under log-space reductions.

Proof: LEVELLED-REACH is a special case of REACH and so clearly LEVELLED-REACH \leq REACH. We'll see the other direction below.

But what does it prove to reduce 3-SAT to SAT?

Not much - only the fact that 3-SAT is in NP or that LEVELLED-REACH is in NL, neither of which was hard to prove anyway. To prove that a special case of a general problem is complete for some class, we have two options:

1. Reduce the general problem to the specific one, or
2. Show that the completeness proof for the general case can be adapted to always yield an instance of the special case

For example, with LEVELLED-REACH the first method would be to reduce REACH to LEVELLED-REACH directly. This can be done by taking the arbitrary directed graph G and making a new levelled graph out of n copies of G, with an edge from (u, i) to $(v, i+1)$ whenever (u, v) is an edge of G.

The second method would be to show that when we map an arbitrary NL problem to a REACH instance, we can make sure that we get a LEVELLED-REACH instance. (If we put a clock on the TM's worktape, for example, the configuration graph becomes levelled with the clock value as the level number.)

Proposition 20.5 3-COLOR is NP-complete.
Proof: Show 3-SAT ≤ 3-COLOR.

$$
\begin{aligned}
\varphi= & C_{1} \wedge C_{2} \wedge \cdots \wedge C_{t} \in 3-\mathrm{CNF} \\
& \operatorname{VAR}(\varphi)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Must build graph $G(\varphi)$ s.t.

$$
\varphi \in 3-\mathrm{SAT} \quad \Leftrightarrow \quad G(\varphi) \in 3 \text {-COLOR }
$$

Working assumption: 3 -SAT requires $2^{\epsilon n}$ time.

G_{1} encodes clause $C_{1}=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$
Claim: Triangle a_{1}, b_{1}, d_{1} serves as an "or"-gate:
d_{1} may be colored "true" iff at least one of its inputs $\overline{x_{1}}, x_{2}$ is colored "true". Similarly, the output f_{1} may be colored "true" iff at least one of d_{1} and the third input, $\overline{x_{3}}$ is colored "true".
f_{i} can only be colored "true".
A three coloring of the literals can be extended to color G_{i} iff the corresponding truth assignment makes C_{i} true.

Proposition 20.6 CLIQUE is NP-complete.

Proof:

Show SAT \leq CLIQUE.

$$
\begin{aligned}
\varphi= & C_{1} \wedge C_{2} \wedge \cdots \wedge C_{t} \in \mathrm{CNF} \\
& \operatorname{VAR}(\varphi)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Must build graph $g(\varphi)$ st.

$$
\begin{aligned}
& \varphi \in \mathrm{SAT} \quad \Leftrightarrow \quad g(\varphi) \in \mathrm{CLIQUE} \\
& L=\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\} ; \quad C=\left\{c_{1}, \ldots, c_{t}\right\} \\
& g(\varphi)=\left(V^{g(\varphi)}, E^{g(\varphi)}, k^{g(\varphi)}\right) \\
& V^{g(\varphi)}=(C \times L) \cup\left\{w_{0}\right\} \\
& E^{g(\varphi)}=\left\{\left(\left\langle c_{1}, \ell_{1}\right\rangle,\left\langle c_{2}, \ell_{2}\right\rangle\right) \mid c_{1} \neq c_{2} \text { and } \bar{\ell}_{1} \neq \ell_{2}\right\} \cup \\
&\left\{\left(w_{0},\langle c, \ell\rangle\right),\left(\langle c, \ell\rangle, w_{0}\right) \mid \ell \text { occurs in } c\right\} \\
& k^{g(\varphi)}= t+1
\end{aligned}
$$

C_{1}
C_{2}

$$
\begin{array}{r}
\mathrm{x}_{1} \overline{\mathrm{x}_{1}} \quad \mathrm{x}_{2} \overline{\mathrm{x}}_{2} \quad \mathrm{x}_{\mathrm{n}} \overline{\overline{\mathrm{x}}_{\mathrm{n}}} \\
\\
\\
g(\varphi), \quad C_{1}=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{n}}\right)
\end{array}
$$

$$
V^{g(\varphi)}=(C \times L) \cup\left\{w_{0}\right\}
$$

$$
E^{g(\varphi)}=\left\{\left(\left\langle c_{1}, \ell_{1}\right\rangle,\left\langle c_{2}, \ell_{2}\right\rangle\right) \mid c_{1} \neq c_{2} \text { and } \bar{\ell}_{1} \neq \ell_{2}\right\} \cup
$$

$$
\left\{\left(w_{0},\langle c, \ell\rangle\right),\left(\langle c, \ell\rangle, w_{0}\right) \mid \ell \text { occurs in } c\right\}
$$

$$
k^{g(\varphi)}=t+1
$$

$$
\begin{aligned}
& V^{g(\varphi)}=(C \times L) \cup\left\{w_{0}\right\} \\
& E^{g(\varphi)}=\left\{\left(\left\langle c_{1}, \ell_{1}\right\rangle,\left\langle c_{2}, \ell_{2}\right\rangle\right) \mid c_{1} \neq c_{2} \text { and } \bar{\ell}_{1} \neq \ell_{2}\right\} \cup \\
&\left\{\left(w_{0},\langle c, \ell\rangle\right),\left(\langle c, \ell\rangle, w_{0}\right) \mid \ell \text { occurs in } c\right\} \\
& k^{g(\varphi)}= t+1 \\
&(\varphi \in \mathrm{SAT}) \Leftrightarrow(g(\varphi) \in \mathrm{CLIQUE})
\end{aligned}
$$

Claim: $\quad g \in F(\mathbf{L})$

Proposition 20.7 Subset Sum is NP-Complete.

$$
\left\{m_{1}, \ldots, m_{r}, T \in \mathbf{N} \mid(\exists S \subseteq\{1, \ldots, r\})\left(\sum_{i \in S} m_{i}=T\right)\right\}
$$

Show 3-SAT \leq Subset Sum.

$$
\begin{aligned}
\varphi & \equiv C_{1} \wedge C_{2} \wedge \cdots \wedge C_{t} \in \quad 3-\mathrm{CNF} \\
\operatorname{VAR}(\varphi) & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Build $f \in F(\mathbf{L})$ such that for all φ,

$$
\varphi \in 3 \text {-SAT } \quad \Leftrightarrow \quad f(\varphi) \in \text { Subset Sum }
$$

		x_{2}	..	${ }_{n}$	C_{1}	C_{2}	...	C_{t}		
T		1	\ldots	1	3	3	\ldots	3		
x_{1}		0	\cdots	0	1	0	\ldots	1		$C_{1}=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
$\overline{x_{1}}$		0	...	0	0	1	\ldots	0		
x_{2}		1	\ldots	0	0	1	...	1		$C_{2}=\left(\overline{x_{1}} \vee x_{2} \vee x_{n}\right)$
$\overline{x_{2}}$		1	\ldots	0	1	0	...	0		
:		:	\ldots		:	:	..			$C_{t}=\left(x_{1} \vee x_{2} \vee \overline{x_{n}}\right)$
x_{n}		0	...	1	0	1	...	0		
$\overline{x_{n}}$		0	...	1	0	0	...	1		
a_{1}		0	...	0	1	0	..	0		
b_{1}		0	...	0	1	0	...	0		
a_{2}		0	\ldots	0	0	1	...	0		
b_{2}		0	\ldots	0	0	1	.	0		
:		:			:	:	..			
a_{t}		0	\ldots	0	0	0	..			
b_{t}		0	...	0	0	0	..			

Knapsack

Given n objects:

object	o_{1}	o_{2}	\cdots	o_{n}	
weight	w_{1}	w_{2}	\cdots	w_{n}	≥ 0
value	v_{1}	v_{2}	\cdots	v_{n}	

$W=$ max weight I can carry in my knapsack.
Optimization Problem:
choose $S \subseteq\{1, \ldots, n\}$
to maximize $\sum_{i \in S} v_{i}$
such that $\sum_{i \in S} w_{i} \leq W$

Decision Problem:

Given \bar{w}, \bar{v}, W, V, can I get total value $\geq V$ while total weight is $\leq W$?

Proposition 20.8 Knapsack is NP-Complete.

Proof: Let $I=\left\langle m_{1}, \ldots m_{n}, T\right\rangle$ be an instance of Subset Sum.

Problem: $(\exists ? S \subseteq\{1, \ldots, n\})\left(\sum_{i \in S} m_{i}=T\right)$
Let $f(I)=\left\langle m_{1}, \ldots m_{n}, m_{1}, \ldots, m_{n}, T, T\right\rangle$ be an instance of Knapsack.

Claim: $\quad I \in$ Subset Sum $\quad \Leftrightarrow \quad f(I) \in$ Knapsack

$$
(\exists S \subseteq\{1, \ldots, n\})\left(\sum_{i \in S} m_{i}=T\right)
$$

$$
\Leftrightarrow
$$

$(\exists S \subseteq\{1, \ldots, n\})\left(\sum_{i \in S} m_{i} \geq T \wedge \sum_{i \in S} m_{i} \leq T\right)$

Fact 20.9 Even though Knapsack is NP-Complete there is an efficient dynamic programming algorithm that can closely approximate the maximum possible V.

