
CMPSCI 601: Recall From Last Time Lecture 18

Theorem: REACH is complete for NL.

Proof:
� � � ��� � � CompGraph ��� 	
� ��� REACH �

Space Hierarchy Theorem: Let ����� � ������� be a
space constructible function. If

�������� � !
�"���
 �����$# %

Then, DSPACE & !
�����(')+*, DSPACE &- �����.' .

Proof: Diagonalize against all machines using space /0 �"���
and time 1325476 ��8 . �
We stated but did not prove the similar Time Hierarchy
Theorem.

1

CMPSCI 601: NSPACE vs. DSPACE Lecture 18

How well can we simulate nondeterministic space with
deterministic space?

We know one way to do it already:

Proposition 18.1

NSPACE &�� ��� �(' � NTIME & 1�� 6��56 ��8 8 ' � DSPACE & 1�� 6��56 ��8 8 '

In fact we can do far better, as we’ll now show.

We have two “algorithms” now for reachability:

	 DFS, etc., which are good for time ��� � 6�
 8 � but bad for
space �� �"���5� , and

	 Nondeterministic search, which is good for space ��� � ����� � �5�
but not a real algorithm at all because of the nonde-
terminism.

How do we attack reachability if space is the main con-
cern?

2

Theorem 18.2 REACH � DSPACE & � ����������� '

s

p

t

Proof:

Define PATH ��� 	�� 	�� � as “there is a path from vertex � to
vertex � of length � or less.

� � REACH � � 	 # PATH � � 	�
 	
���
PATH ��� 	�� 	��� � ��� # � � � � ��� 	�� �

PATH ��� 	�� 	 1�� � � ����� � � PATH ��� 	�� 	 � � � PATH ��� 	�� 	 � �5�

This gives us a recursive algorithm for �����! . How much
space does it use?

3

We determine the space usage with a recurrence.

� ��� 	 � � = space to check paths of distance � in graphs
with � nodes.

� ��� 	 % � # � � ���
� ��� 	 � � # � � ����� � ��� � ��� 	 ��� 1 � and so,

� �"� 	
��� # � �5� ����� ��� � �
�

4

This can be thought of as a middle-first search algorithm
for REACH, efficient for deterministic space but lousy
for time.

boolean isPath (vertex x,
vertex y, int dist) {

if (x == y) return true;
if (dist == 1) return (edge(x, y));
else for (vertex u = 0; u < n; u++)

if (isPath (x, u, dist/2) &&
isPath (u, y, dist - dist/2))
return true;

return false;}

The call path(s,t,n-1) recurses to a depth of at most���3��� . Each recursive call needs � � ���3��� � bits on the stack.
But the running time may be as bad as ������� � since there
are in effect ������� nested loops.

� ��� 	 % � # � � ���
� ��� 	 � � # � ��� � � ��� 	���� 1 � and so,
� ��� 	
��� # � � 6 ����� ��8

5

Corollary 18.3 (Savitch’s Theorem) For � ����� � ������� ,

DSPACE &�� ��� �(' � NSPACE & � �����(' � DSPACE & � � ��� �5� � '

Proof: Let � � NSPACE &�� �����.' ; � # � ��� �

� � � � CompGraph ��� 	
� ��� REACH

	 � 	 # ��� 	
CompGraph ��� 	
� � 	 # 1 � 6��56 ��8 8

Testing if CompGraph ��� 	
� � � REACH takes space,

������� � 	 CompGraph ��� 	 � � 	 �5� � # � ����� � 1�� 6��56 ��8 8 �5� �
� �5� � ����� � � �

From � build CompGraph ��� 	
� � in DSPACE[s(n)]. �
Corollary 18.4 PSPACE # � � ����� 	

.

6

CMPSCI 601: Immerman-Szelepcsényi Thm Lecture 18

Along with regular languages and CFL’s, there is another
old-time complexity class called the context-sensitive lan-
guages that turns out to be NSPACE �"��� . It was asked
whether this class is closed under complement (like the
regular languages) or not (like the CFL’s). Since the gen-
eral intuition was that it was not, no one looked for a
proof that it was. The problem remained open for about
twenty years.

In 1987 two researchers, Neil Immerman in the US and
Richard Szelepcsényi in Slovakia, simultaneously found
a proof that nondeterministic space classes are closed
under complement. Not only that, the proof is easy to
present.

The reason for the simultaneity is probably that a series
of results just before this began to suggest that the result
might be true. Neil reports that he got the basic idea of
the proof while walking his dog.

7

Theorem 18.5

REACH � NL

Proof:

Fix the graph
�

.

� � # 	���� 	��
reachable from � using � � edges � 	

Claim: The following predicates are each in NL:

1. DIST ��� 	 � � : distance � � 	 � � � �
2. NDIST ��� 	 � �	� � : if � # � � then
 DIST ��� 	 � �

Proof:

1. Guess the path of length � � from � to � .

2. Guess � distinct vertices
�

	����� 	 ��� , with each

��� �#� , and guess paths showing DIST � ��� 	 � � for each � .
�

8

Claim: We can “compute” � � in NL.

What does “compute” mean? We define a nonde-
terministic procedure that either (a) outputs the correct
value of � � , or (b) fails to output anything. There must
be at least one path on which (a) occurs.

Proof: By induction on � .

Base case: � � # � , whatever the graph.

Inductive step: Suppose we are on a path that has
reached a value of � � , which by the IH is correct. The
following pseudo-Java code returns the correct value of� ���

 if it makes the right guesses, and rejects otherwise:

9

int c = 0;
for (int v=0; v < n; v++) {

if (guessBoolean())
if (DIST(v,d+1)) c++;
else reject;

else // verify !DIST(v,d+1)
for (int z=0; z < n; z++) {

if (NDIST(z,d,Nd)) break;
if ((z!=v) && (!edge(z,v)))

break;
reject;}}

return c;

The “right guesses” are true for
�
’s that are within dis-

tance � � � of � and false for the others. Correct
guesses can be verified and wrong guesses cause the whole
procedure to reject.

� � REACH � NDIST �
�	
��� � � � �

�

10

Corollary 18.6 (Immerman-Szelepcsényi Theorem) Let
� ����� � ����� � . Then,

NSPACE & � �����(' # co-NSPACE & � �����('

Proof: Let � � NSPACE &�� �����.' ; � # � ��� �

� � � � CompGraph ��� 	
� ��� REACH

	 � 	 # ��� 	
CompGraph ��� 	
� � 	 # 1�� 6��56 ��8 8

Testing whether CompGraph ��� 	
� � is in REACH with a
nondeterministic procedure takes space

����� � 	CompGraph ��� 	
� � 	 � # ����� � 1�� 6��56 ��8 8 �
� � � �����5�

�

11

CMPSCI 601: Review of Reductions Lecture 18

Definition 18.7 We say that
�

is reducible to
�

,
� � �

,
iff � � � � L � such that,

��� � � N � ��� � � � � � ��� � � � �
�

� ���

�� # � � 	�� � � % � # �
	 �

Claim: � � � ���

�� .

Proof: Define ����� as follows:

�
476 ��8 # erase input

write �
� � if 1 then write 17

else loop

� � � � � � ����� # � � �
476 ��8 � % � # �
	

�

12

Why is this reduction in � � L � ?
Given a number � , we need to write code for a TM that
prints � , runs

� � on it, and then either writes “17” or
loops. We are limited to space that is logarithmic in the
length of the binary number � .

But the “print � ” part is going to be mostly a copy of the
binary of � , and we have assumed that the code of

� �
is easily obtainable from the binary for � . (For example,
we could say that the binary either is the code for

� � in
ASCII, or � isn’t the number of a TM.) The last part is
only � � ��� bits of TM code.

13

Theorem 18.8 Let � be one of the following complex-
ity classes: L, NL, P, NP, co-NP, PSPACE, EXPTIME,
Primitive-Recursive, RECURSIVE, r.e., co-r.e.

Suppose
� � �

.

If
� � � Then

� � �

That is, each of these classes is closed under reductions.

14

Proof: Suppose that
� � �

and
� � � .

We build a � machine for
�

: � � � � ��� ��� �

w

n

f(w)

nk

logspace

transducer

C - machine

for T

15

There’s actually a problem with this proof in the case
where � is L or NL. It’s the same issue that came up in
the extra credit of HW#2 where we wanted to show that
TIMES is in � � L � .
A Nontrivial Fact About Logspace Reductions:

If � � � and � � � , then � � � .

It looks obvious at first, but draw the picture of the two
machines! The output tape of the first machine becomes
the input tape of the second. In the two original machines
neither counts against the space bound, but in the new
machine this becomes a worktape!

Similarly the former output tape of our logspace trans-
ducer is now a worktape, and we a priori need a work-
tape to store the � by � array of partial product bits when
computing TIMES.

16

Proving Transitivity:

Say we know that reduces � to � and that ! reduces �
to � .

Clearly the reduction we want from � to � is � , where
� �"� � # !

� ��� �5� . Then � � � iff � �"� � � � . The only
problem is to show that � is in � � L � .
Here’s how to compute � �"� � , when � is the length- �
string on the read-only input tape. Let � be �"� � and
start computing !

��� � # � ��� � . When your computation
needs a bit � � of � , however, suspend that computation
until you have calculated � � from � , and then continue.

At any given time you have the computation of !
��� � from

� going, which takes � � ����� 	 � 	 � # � ����������� space. You
also may be temporarily computing a bit of � from � ,
which you get by carrying out the computation of ��� �
(using � ������� ��� space) until � � is output, at which time
you take it and continue with the main computation. (This
is a bit time-intensive, but we don’t care because we’re
concerned only with space.)

The total space usage is � � ��������� .

17

Reductions are Useful for:

Lower Bounds:

If � is hard and � � � then we may conclude that � is
hard.

(Example: � is defined to be NP-hard if for any � �
NP, we have that � � � . If � is NP-hard and � � � ,

� is seen to be NP-hard by the transitivity of � .)

Upper Bounds:

If � is easy and � � � then we may conclude that � is
easy.

(Example: Define “easy” to mean “a member of � ” for
any of the classes in the previous theorem.)

18

