
CMPSCI 601: Recall From Last Time Lecture 17

First-Order Logic: A vocabulary to talk about a par-
ticular type of domain, formulas with atomic predicates,
boolean operators, and quantifiers.

Fitch: A proof system including the rules we had for
boolean operators plus new rules for identity and quanti-
fiers.

Main Theorems:

� Soundness: (Lecture 14) If
� � �

in Fitch, and� � �
, then

� � �
.

� Completeness: (Lecture 15) If
� � � �

, meaning that�
is true in any model where

�
is true, then

� � �

in Fitch.
� Compactness: (Lecture 16) If every finite subset of�

has a model, then
�

has a model.
� Incompleteness: (Lecture 16) Any r.e. set of sen-

tences
�

in the language of number theory either con-
tains some statement that is false in N or cannot prove
some statement that is true in N.

1

Relating Logic to Computability:

We observed that it is easy, certainly primitive recursive,
to test whether an alleged proof is valid according to the
rules of Fitch.

Corollary to Completeness:
� � � � � � � �

� � � � � �

FO-VALID
�

FO-THEOREMS

Note that FO-VALID and FO-THEOREMS are state-
ments that are true in any model of the given vocabu-
lary. While we constructed a special model where every
statement was either provably true or provably false, this
is not true in general. An FO-VALID statement about
graphs would be true for all graphs, but most interesting
statements are true for some graphs and not for others.

2

Theorem 17.1 FO-THEOREMS is r.e. complete.

Proof: We have already seen that FO-THEOREMS is
r.e., because we can semi-decide whether a formula �
is a theorem by searching all strings in parallel to see
whether any is a proof of � .

Recall that the language � is represented by a bounded
formula

���
.

� � � �
N

� � ����� �
	 � �
� � ����� �
	

� � � �
“
�
� � � � � �
	 ” � FO-THEOREMS

We have thus shown that � � FO-THEOREMS, by defin-
ing � so that:

� � �
	 �
“
��� � ����� �
	 ”

�
Note that this function is only well-defined because

�
�
is a finite set of formulas.

3

CMPSCI 601: Back to Complexity Classes Lecture 17

Definition A set � � ��� is in DTIME ��� � �
		� iff there
exists a deterministic, multi-tape TM,
 , and a constant� , such that,

1. � � � �
 	
 ��� � � � �
 � � 	 � ���
,

and

2. � � � � � ,
 � � 	 halts within � ����� � � � � � 	 	 steps.

Definition A set � � � � is in DSPACE ��� � �
		� iff there
exists a deterministic, multi-tape TM,
 , and a constant� , such that,

1. � � � �
 	 , and

2. � � � � � ,
 � � 	 uses at most � ����� � � � � � 	 	 work-tape
cells.

(The input tape is considered “read-only” and not counted
as space used.)

4

L
 DSPACE ������� � �
P
 DTIME � ���	��

� �
 � ����
 DTIME � � � �

PSPACE
 DSPACE � � ����
�� �
 � ����
 DSPACE � � � �

Theorem For any functions � � �
	�� ��� � � �
	�� ����� � , we
have

DTIME ��� � �
		� � DSPACE � � � � 		�
DSPACE � � � �
	 � � DTIME ��� �	�����! "��� �

Proof: Let
 be a DSPACE ��� � �
		� TM, let � � � � , let� � � � �

 � � 	 has at most,
� � �$# � � � � � � �
	 � � 	&% # � � �(' ���) "� * � ',+ ���) "�

possible configurations.

Thus, after � ',+ ���) "� steps,
 � � 	 must be in an infinite loop.�

Corollary L � P � PSPACE

5

NTIME � � � � 		�
 problems accepted by NTMs in time � � �
	

NP
 NTIME � ������
�� �
 � ����
 NTIME � � � �

Theorem For any function � � �
	 ,

DTIME � � � �
	 � � NTIME � � � �
	 �

� DSPACE ��� � �
		� � DTIME ��� ����� �) "� � �

Corollary

L � P � NP � PSPACE

6

CMPSCI 601/CM730-A: The Function Class
� ��� 	

Lecture 17

For any complexity class
�

, define
� ��� 	 , the total, polynomially-

bounded functions computable in
�

as follows:

� ��� 	 � ����
���
� 	 � � � � �

��

� 	 � ��� 	 � � � � � 	 � � � � � � %
and bit-graph

� � 	 � � 	
� ���
���

bit-graph
� � 	 � ��� � ��� ����� �

bit � of
� � � 	 is � �

Idea: � � � ��� 	 iff

1. � is polynomially bounded, and,

2. bit � of � � � 	 is uniformly computable in
�

and co-
�

.

We rule out functions that are not polynomially bounded
because we want to be able to define the complexity class
in terms of either the input length or the output length.

7

CMPSCI 601: NSPACE Lecture 17

NSPACE � � � � 		� is the set of problems accepted by NTMs
using at most �

� � � �
	 	 space on each branch.

2s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

t(n)

t(n)

� � �
	 space on each branch

8

Definition REACH is the set of directed graphs � such
that there is a path in � from � to � . (Remember that in���

, graphs always have constants for the vertices � and
� .)

1

3

11

10

8

6

7

2

5

4

9

s t

We observed earlier that REACH is in the class P, be-
cause we can depth-first search � starting from � , in time

�
��� 	 �

�
� ��� 	 , and see whether we ever encounter � . This

algorithm is not space-efficient, however, as we need �
� �
	

space to keep track of whether each vertex has been vis-
ited.

9

Proposition REACH � NL
�

NSPACE ������� � �

Proof: Let � � ��� �
, and let � and � be variables ranging

over vertices.

boolean reach() {
b = s;
for (int c=0; c < n; c++) {

if (b==t) return true;
a = b;
b = nondeterministicChoice();
if (not edge(a,b)) return false;}

return false;}

This algorithm might return true if the input graph is in
REACH, and cannot return true if it is not. It uses three
variables of �

� ����� �
	 bits each, and thus puts the lan-
guage REACH in the class NSPACE ������� � � . �

10

Definition 17.2 A problem � is complete for a complex-
ity class

�
iff

1. � � �
, and

2.
� ��� � � 	 � � � � 	

�

We have to redefine the notion of reduction used in defin-
ing the � symbol. Total recursive reductions would make
the concept of NP-completeness unreasonable.

NP-completeness is usually defined in terms of reduc-
tions in the class

� �
P 	 , functions computable in polyno-

mial time. But we’re going to want to talk about lan-
guages complete for P and NL, so we redefine our re-
ductions to be in

� �
L 	 .

We’re most interested in natural complete problems for
these classes, meaning problems that someone might have
posed other than as examples of complete problems. It
turns out that the natural complete problems we will see
remain complete under any reasonable notion of reduc-
tion.

11

Theorem 17.3 REACH is complete for NL.

Proof: Let � � NL, � � � ��� 	 , uses � ����� � bits of
worktape.

Input � , � � � � �

� �� CompGraph
��� � � 	 � � � ��� � � � � 	

� � � ID
� ��� � � ����� � � � States

��� 	 � � � ��� � � � � �
	 ����� ��� �

� � � � ID
 � ID � 	 �
ID
 � � 	�
 �� ID � � � 	 �

� �
initial ID

� �
accepting ID

An accepting computation of
�

corresponds exactly to a
path through the configuration graph, from the start con-
figuration to the accepting configuration, following an
edge for each computation step.

12

2

read-only input w

worktape p

n

c(log n)

h

q

1

CompGraph
��� � � 	 � � � � � � � � � 	

� � � ID
� ��� � � ����� � � � States

��� 	 � � � ��� � � � � �
	 ����� ��� �

� � � � ID
 � ID � 	 �
ID
 � � 	
 �� ID � � � 	 �

� �
initial ID

� �
accepting ID

13

Claim:

� � � � � � � ��� 	 �
CompGraph

��� � � 	 � REACH

v

s t

�

Corollary 17.4

NL � P

Proof: We say that REACH � P

P is closed under (logspace) reductions.

That is
� � � P � � � � 	 � � � P

�

14

CMPSCI 601: Hierarchy Theorems Lecture 17

Definition 17.5 Function � 	
N
�

N is
�

-constructible
if the map � �� � � �
	
is computable in the complexity class

� � � � �
		� . For exam-
ple a function � � �
	 is DSPACE-constructible if the func-
tion � � �
	 can be deterministically computed from the in-
put

� , using space at most � � � � �
		� . �

Fact 17.6 All reasonable functions greater than or equal
to ����� � are DSPACE-constructible, and all reasonable
functions greater than or equal to � are DTIME-constructible.

15

The Four Hierarchy Theorems:

Theorem 17.7 If � � �
	 is a
�

-constructible function;
�

is
DSPACE, NSPACE, DTIME, or NTIME; and, if �

� �
	 is
sufficiently smaller than � � �
	 then

� ��� � �
		� is strictly con-
tained in

� � � � � 		� .
“ �
� �
	 sufficiently smaller than � � �
	 ” means:

����� �� �
�
� �
	
� � �
	

� �

for
� �

DSPACE � NSPACE � NTIME � and

����� �� �
�
� �
	 ����� � � � �
	 	

� � �
	
� �

for
� �

DTIME

16

We’ll only prove one of these four in lecture:

Theorem 17.8 (Space Hierarchy Theorem)

Let � � ����� � be a space constructible function. If

����� �� �
�
� �
	
� � �
	

� �

Then, DSPACE ��� � �
		� ���� DSPACE � � � �
	 � .
Proof: Construct following DSPACE � � � �
		� machine, � :

Input: � , � � � � �

1. Mark off � � � �
	 tape cells, (� space constructible)

2. Simulate
 � � � 	 using space � � � �
	 , time � ���
	 �) "�
3. if (
 � � � 	 needs more space or time) then accept

4. else if (
 � � � 	 = accept) then reject

5. else accept // (
 � � � 	 = reject)

space to simulate
 � � � 	
� ��
 �

��	 �) "�
counter

� ��
 �
�
	 �) "�

17

Claim:
� � � 	 � DSPACE � � � � 		�
 DSPACE � � � � 		�

Clearly
� � � 	 � DSPACE � � � �
	 � by the construction.

Suppose that
� � � 	 � DSPACE � � � �
		� .

Let
� �
 � 	 � � � � 	 , where
 � uses � � � �
	 space.

Choose a number
�

such that
� � � � � 	 � � � � �
	 * � � �
	 	 .

Choose a string � � such that
 � + and
 � compute the
same function, and that

� � � � � �
. (Add useless states to

 � , for example.)

On input � � , � successfully simulates
 � + � � � 	 in � � � � 	
space and � ��	 �) "� time.

But now we have a contradiction:

� � � � � � 	 � � ���� � �
 � + 	 �

� ���� � �
 � 	 � � ���� � � � 	
�

18

co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP

NP

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0

19

