Theorem 9.4: The busy beaver function, $\sigma(n)$, is eventually larger than any total, recursive function.

Theorem 9.5: There is a Universal Turing Machine U such that,

$$
U(P(n, m)) \quad=\quad M_{n}(m)
$$

Theorem 9.6: (Unsolvability of Halting Problem) Let, HALT $=\left\{P(n, m) \mid\right.$ TM $M_{n}(m)$ eventually halts $\}$ Then, HALT is r.e. but not recursive.

Listing of all r.e. sets: $\quad W_{0}, W_{1}, W_{2}, \cdots$

$$
W_{i}=\left\{n \mid M_{i}(n)=1\right\}
$$

Corollary 9.8: Let,

$$
\begin{aligned}
K & =\left\{n \mid M_{n}(n)=1\right\}=\{n \mid U(P(n, n))=1\} \\
& =\left\{n \mid n \in W_{n}\right\}
\end{aligned}
$$

Then,

$$
K \quad \in \quad \text { r.e. }- \text { Recursive } .
$$

Notation: $M_{n}(x) \downarrow$ means that TM M_{n} converges on input x, i.e.,

$$
M_{n}(x) \downarrow \quad \Leftrightarrow \quad M_{n}(x) \in \mathbf{N} \quad \Leftrightarrow \quad M_{n}(x) \neq \nearrow
$$

Fundamental Theorem of r.e. Sets: Let $S \subseteq$ N. T.F.A.E.

1. S is the domain of a partial, recursive function, i.e.,

$$
(\exists n)\left(S=\operatorname{dom}\left(M_{n}(\cdot)\right)=\left\{x \in \mathbf{N} \mid M_{n}(x) \downarrow\right\}\right)
$$

2. $S=\emptyset$ or S is the range of a total, recursive function, i.e., $S=\emptyset$ or $S=\operatorname{range}\left(M_{n}(\cdot)\right)=M_{n}(\mathbf{N})$, for some total, recursive function $M_{n}(\cdot)$.
3. S is the range of a partial, recursive function, i.e.,

$$
S=M_{n}(\mathbf{N}), \text { for some } n \in \mathbf{N} .
$$

4. S is r.e., i.e., $S=W_{n}$, for some $n \in \mathbf{N}$

Proof: (Please learn this proof!)
$(1 \Rightarrow 2)$: Assume (1), $S=\left\{x \mid M_{n}(x) \downarrow\right\}$.
case 1: $S=\emptyset$. Thus S satisfies (2).
case 2: $S \neq \emptyset$. let $a_{0} \in S$.
From M_{n} compute M_{r}, which on input z does the following:

1. $x:=L(z) ; y:=R(z) \quad / /$ i.e., $z=P(x, y)$
2. run $M_{n}(x)$ for y steps
3. if it halts then return (x)
4. else return $\left(a_{0}\right)$

Claim: $S=M_{r}(\mathbf{N})=\left\{M_{r}(x) \mid x \in \mathbf{N}\right\}$.
$M_{r}(\mathbf{N}) \subseteq S$
$M_{r}(\mathbf{N}) \supseteq S$
Suppose $x \in S$.
Thus $M_{n}(x)$ converges in some number y of steps.
Therefore, $M_{r}(P(x, y))=x$.
Note the non-computable step in the construction: there is no way to tell whether we are in case 1 or case 2 .
(2) \Rightarrow (3): Assume (2). If $S=\emptyset$ then $S=M_{0}(\mathbf{N})$ where M_{0} is a Turing machine that halts on no inputs.

Otherwise, $S=M_{n}(\mathbf{N})$, i.e., S is the range of the partial, recursive function $M_{n}(\cdot)$.

Note: Even though $M_{n}(\cdot)$ is total, it is still considered a "partial, recursive function". However, of course, $M_{n}(\cdot)$ is not "strictly partial".

$$
(3) \Rightarrow(4): \text { Assume }(3), S=M_{n}(\mathbf{N})
$$

From M_{n} we construct M_{d}, which on input x does the following:

1. for $i:=1$ to $\infty\{$
2. \quad run $M_{n}(0), M_{n}(1), \ldots, M_{n}(i)$ for i steps each.
3. if any of these output x, then return $(1)\}$

The above construction is called dove-tailing.
Claim: $\quad M_{d}(\cdot)=p_{S}(\cdot)$.
If $x \in S$, then $x \in \operatorname{range}\left(M_{n}(\cdot)\right)$.
So for some j and $k, M_{n}(j)=x$ and the computation takes k steps.
Thus, at round $i=\max (j, k), M_{d}(x)$ will halt and output " 1 ".

If $x \notin S$, then $M_{d}(x)$ will never halt.
Thus, $S=W_{d}=\left\{x \mid M_{d}(x)=1\right\}$.
$(4) \Rightarrow(1):$ Assume (4), and thus $S=W_{n}$.

$$
S=\left\{i \mid M_{n}(i)=1\right\}
$$

From M_{n}, construct M_{d}, which on input x does the following:

1. run $M_{n}(x)$
2. if $\left(M_{n}(x)=1\right)$ then return(1)
3. else run forever

$$
S=\left\{x \mid M_{d}(x) \downarrow\right\}
$$

Thus, $S=\operatorname{dom}\left(M_{d}(\cdot)\right)=\left\{x \mid M_{d}(x) \downarrow\right\}$.

This theorem lets us put the "enumerable" in r.e..
A nonempty language A is said to be Turing enumerable if there exists a TM that, when started on blank tape, lists the elements of A. The TM will take forever to do so if A is infinite, and it might repeat elements.

It should be pretty clear that for nonempty sets "Turing enumerable" means exactly "the range of a total recursive function". So except for \emptyset, "Turing enumerable" means exactly "r.e."

An infinite set of numbers is Turing enumerable in increasing order if it is Turing enumerable by a machine that lists i before j whenever $i<j$.

It's pretty easy to see that an infinite set is Turing enumerable in increasing order iff it is recursive:

- \Rightarrow : Keep running the TM until you hit the target or pass it.
- \Leftarrow : Run through all numbers in increasing order and test each one, listing the ones that are in the language.

Definition 7.1 Let S and T be sets of numbers. We say that S is reducible to $T(S \leq T)$ iff there exists a total, recursive $f: \mathbf{N} \rightarrow \mathbf{N}$ such that:

$$
(\forall w \in \mathbf{N}) \quad(w \in S) \quad \Leftrightarrow \quad(f(w) \in T)
$$

Note: Later we will require $f \in F(\mathbf{D S P A C E}[\log n])$.
The notation " $S \leq T$ " is meant to suggest " S is no more difficult than T ". To use this notation, we should be confident that " \leq " is reflexive and transitive (You'll check this on HW\#3.) The notation suggests as well that it is anti-symmetric, but it is not. It is quite possible to have $S \leq T, T \leq S$, and $S \neq T$ all be simultaneously true. In this case we say S and T are equivalent.

This kind of reduction is called a many-one reduction. Later we'll see another kind called a Turing reduction.

An Example:

$$
A_{0,17}=\left\{n \mid M_{n}(0)=17\right\}
$$

Claim: $\quad K \leq A_{0,17}$.
Proof: Define $f(n)$ as follows:

$$
n \in K \Leftrightarrow M_{n}(n)=1 \Leftrightarrow M_{f(n)}(0)=17 \Leftrightarrow f(n) \in A_{0,17}
$$

If $K \leq A_{0,17}$ really means " K is no harder than $A_{0,17}$ " or equivalently " $A_{0,17}$ is no easier than K ", then we should be able to conclude that $A_{0,17}$ is not recursive because K is not recursive. The next theorem will let us do this in general.

Fundamental Theorem of Reductions:

If $S \leq T$ are languages then:

1. If T is r.e., then S is r.e..
2. If T is co-r.e., then S is co-r.e.
3. If T is Recursive, then S is Recursive.

Moral: \quad Suppose $S \leq T$. Then,

- If T is easy, then so is S.
- If S is hard, then so is T.

Another way to phrase this is that r.e., co-r.e., and Recursive are each downward closed under reductions.

Proof: Let $f: S \leq T$, i.e., $(\forall x)(x \in S \Leftrightarrow f(x) \in T)$

1. Suppose $T=W_{i}=\left\{x \mid M_{i}(x)=1\right\}$.

From M_{i} compute the TM $M_{i^{\prime}}$ which on input x does the following:
(a) compute $f(x)$
(b) run $M_{i}(f(x))$

Then

$(x \in S) \Leftrightarrow(f(x) \in T) \Leftrightarrow\left(M_{i}(f(x))=1\right) \Leftrightarrow\left(M_{i^{\prime}}(x)=1\right.$
Therefore, $S=W_{i^{\prime}}$, and we have shown that $S \in$ r.e., as desired.

Recall our hypothesis for this proof:
$f: S \leq T$,
i.e.,
$(\forall x)(x \in S \Leftrightarrow f(x) \in T)$

The last two parts of the theorem follow directly from the first:
2. Observation: $S \leq T \quad \Leftrightarrow \quad \bar{S} \leq \bar{T}$.

$$
T \in \text { co-r.e. } \Leftrightarrow \bar{T} \in \text { r.e., } \bar{S} \in \text { r.e. } \Leftrightarrow S \in \text { co-r.e. }
$$

3. $T \in$ Recursive $\quad \Rightarrow \quad(T \in$ r.e. $\wedge T \in$ co-r.e. $) \quad \Rightarrow$
$(S \in$ r.e. $\wedge S \in$ co-r.e. $) \quad \Rightarrow \quad S \in$ Recursive

Definition 7.2 Let $C \subseteq \mathbf{N}$. C is r.e.-complete iff

1. $C \in$ r.e., and
2. $(\forall A \in$ r.e. $) \quad(A \leq C)$

Intuition: C is a "hardest" r.e. set. In the " \leq " ordering, in that it is above all other r.e. sets.

If you have seen a definition of "NP-complete", this definition should look familiar. NP-completeness was explicitly modeled on this historically earlier concept.

It is perhaps odd that there are any r.e.-complete sets at all - the definition doesn't suggest why there should be. But in fact we've already seen one.

Theorem 7.3 K is r.e. complete.
Proof: Let $A \in$ r.e. be arbitrary, so we know that $A=W_{i}$ for some i.

We want:

$$
(\forall n)(n \in A \quad \Leftrightarrow \quad f(n) \in K)
$$

Note the implicit types here. The number $f(n)$ is going to be interpreted as the number of a TM.
Define the recursive function f which on input n computes this particular TM:

$$
\begin{aligned}
M_{f(n)}= & \text { Erase input Write } n \quad M_{i} \\
n \in A & \Leftrightarrow M_{i}(n)=1 \quad \Leftrightarrow \quad(\forall x) M_{f(n)}(x)=1 \\
& \Leftrightarrow M_{f(n)}(f(n))=1 \quad \Leftrightarrow \quad f(n) \in K
\end{aligned}
$$

Get used to numbers being treated as machines! Lots of our standard languages are of the form $\left\{n: M_{n}\right.$ is a TM such that... \}.

Proposition 7.4 Suppose that C is r.e.-complete and the following hold:

1. $S \in$ r.e., \quad and
2. $C \leq S$
then S is r.e.-complete.
Proof: Show: $(\forall A \in$ r.e. $)(A \leq S)$

Know: $(\forall A \in$ r.e. $)(A \leq C)$
Follows by transitivity of $\leq: \quad A \leq C \leq S$.

Corollary 7.5 $A_{0,17}$ is r.e.-complete.

Every r.e.-complete set is r.e. and not recursive.

HALT $=\left\{P(n, m) \mid \operatorname{TM} M_{n}(m)\right.$ eventually halts $\}$ Proposition 7.6 HALT is r.e.-complete.

Proof: We have already seen that HALT is r.e. It thus suffices to show that $K \leq$ HALT.

We want to build a total, recursive f such that for all $w \in \mathbf{N}$,

$$
\begin{aligned}
& w \in K \Leftrightarrow \\
& M_{w}(w)=1 \Leftrightarrow \\
& M_{L(f(w))}(R(f(w))) \text { halts }
\end{aligned}
$$

That is, we want,
$M_{w}(w)=1 \quad \Leftrightarrow \quad M_{\ell}(r)$ halts, \quad where $f(w)=P(\ell, r)$
Given w, let, $M_{\ell(w)}=$

Letting $f(w)=P(\ell(w), 0)$, we have that
$M_{w}(w)=1 \quad \Leftrightarrow \quad M_{\ell(w)}(0)$ halts $\quad \Leftrightarrow \quad f(w) \in$ HALT \uparrow

