
CMPSCI601: Introduction Lecture 1

What is the subject matter of this course?

� Computability: What can be computed in principle?
� Logic: How can we express statements and proofs?
� Complexity: What can be computed in practice?

Problem
Mathematical

Concrete

Model

The mathematical method is to form abstractions that
capture some important aspects of a real-world phenomenon,
then operate on those abstractions using formal defini-
tion, proof, and mathematical problem-solving.

1



Our real-world target is digital computation. Our first ab-
straction is say that we have an input, a collection of bits,
and want an output, often a single bit. The key questions
are then:

� How is the input organized?
� What computational operations are allowed?
� Do we have internal memory, and how much?

An answer to these questions gives us a formal model of
computation.

2



Some Formal Models of Computation:

� Boolean: Input bits are undifferentiated, we can use
boolean operations (AND, OR, NOT) and store the
results. We also express properties of the input using
propositional logic.

� Formal Language Theory: The input bits are ar-
ranged in a string of letters. We work with one let-
ter at a time. Defining the internal memory gives
us models such as the finite-state machine, pushdown
automaton, or Turing machine.

� First-Order Logic: The input bits form a structure
made up of relations. We express properties of the
input using first-order logic (e.g., quantifiers

�
and

�
).

� Recursive Function Theory: Input bits are formed
into non-negative integers, on which we define func-
tions starting from arithmetic operations.

� Abstract RAM: The input and internal memory are
formed into words in registers, and operations mimic
those of real-world sequential computers.

3



CMSPSCI 601: Course Requirements Lecture 1

Texts: available at Jeffery Amherst College Store

[BE:] Jon Barwise and John Etchemendy, Language,
Proof, and Logic (required, new copy needed for
homework)

[P]: Christos Papadimitriou, Computational Complex-
ity (recommended)

[S]: Michael Sipser, Introduction to the Theory of
Computation (useful, lower-level reference)

Prerequisites: Mathematical maturity: reason abstractly,
understand and write proofs, use big-O notation. CMP-
SCI 250 needed; CMPSCI 311, 401 helpful. Today’s
material is a good overview of the sort of stuff we will
do, next lecture we start right in on formal language
theory.

Graded Work:
� Eight problem sets (35% of grade)
� Midterm (30% of grade), in-class Monday 29 March

2004
� Final (35% of grade)

4



Cooperation: Students should talk to each other and
help each other; but write up solutions on your own,
in your own words. Sharing or copying a solution
could result in a grade of F for the course, even on
the first offense. If a significant part of one of your
solutions is due to someone else, or something you’ve
read then you must acknowledge your source! When
the grader then looks at the source, it should be clear
from your writeup that you’ve understood anything
you’ve taken from it. A good heuristic is not to have
the source in front of you when you write up.

Electronic Grading: Most of the homework problems
from [BE] will be graded electronically. Your inter-
action with the software provided will result in a file
that you send in, and each student must send in a sep-
arate file from a separate interaction with the software
(they check).

5



CMSPCI 601: On Reserve in Dubois Library Lecture 1

Mathematical Sophistication

� How to Read and Do Proofs, Second Edition by Daniel
Solow, 1990, John Wiley and Sons.

Review of Regular and Context-Free Languages

� Hopcroft, Motwani, and Jeffrey D. Ullman, Introduc-
tion to Automata Theory, Languages, and Computa-
tion, 2001: Chapters 1–6.

� Lewis and Papadimitriou, Elements of the Theory of
Computation, 1998: Chapters 1–3.

� Sipser, Introduction to the Theory of Computation,
1997: Chapters 1 – 2.

NP Completeness

� Garey and Johnson, Computers and Intractability, 1979.

Descriptive Complexity

� Immerman, Descriptive Complexity, 1999.

6



Syllabus will be up soon on the course web site:

� http://www.cs.umass.edu/˜barring/cs601

There is a pointer there to the Spring 2003 web site, and
the syllabus there will be close to what we do here.

Rough guide:

� Formal Languages and Computability (9 lectures)
� Propositional and First-Order Logic (6 lectures)
� Complexity Theory (12 lectures)

7



CMPSCI601: Models of Computation Lecture 1

� How is the input organized?
� What computational operations are allowed?
� Do we have internal memory, and how much?

An answer to these questions gives us a formal model of
computation.

Some Formal Models of Computation:

� Boolean:
� Formal Language Theory: (starting next lecture)
� First-Order Logic:
� Recursive Function Theory:
� Abstract RAM: (as in an algorithms course)

8



Boolean Computation:

Data Type: Booleans, true or false, 0 or 1

Operations: AND, OR (inclusive), NOT, can define more

Variables: Inputs ���������������
	 , others ����������������
Expressions: ������� ��������� �
� , etc.

Straight-Line Program:

y_1 = NOT x_1;
y_2 = y_1 OR x_2;
y_3 = x_3 AND x_4;
y_4 = y_2 AND y_3;
y_5 = y_2 OR x_1;
return NOT y_5;

A straight-line program is equivalent to a boolean circuit,
about which more later. Each line of the program (gate of
the circuit) has a truth value that is a function of the input
variables. Given a function of the inputs (a property), we
will consider among other things how long a program is
needed to compute it in this way.

9



Boolean Logic:

Chapters 1-8 of [BE] deal with propositional or boolean
logic. The main topics are:

� Syntax and semantics for boolean expressions
� Rules for proving that an expression is a tautology or

that one expression follows logically from another
� A formal proof system encapsulating these rules and

implemented as interactive software, included with
the book

The basics of boolean logic should be review, but formal
proof may not be. You will be expected to learn the proof
system from the book and software, and there will be
exercises on it in HW#2. At that point we will consider
two important properties of the system:

� Soundness: everything provable is true
� Completeness: everything true is provable

Here “everything” refers only to statements that can be
made within the system.

10



First-Order Logic:

We can think of a sequence of boolean variables ��� ���������� 	�� �
as a single object

�
, a function from the set ��� ���������	��
 ��

to ��� ���� . Thus for any number � in the range,
� ��� � is the

boolean variable we used to call ��� .
�

is also called a unary relation, a property that each
number in the range either has or doesn’t have. We can
also have binary, ternary, or � -ary relations.

For example, in a directed graph where the vertices are
named ��� ���������	� 
 �� we have a binary relation � , where
the boolean � ��� ��� � is � iff there is an edge from � to � .

11



More First-Order Logic:

A first-order structure, roughly speaking, is a universe of
base objects and a set of relations over them. If one of
these relations is the input, we can use first-order logic to
define properties of the input.

For example the first-order sentence
� � �

� � � � ��� � � �
is true for the graph with edge relation � iff every vertex
has out-degree at least one.

In Chapters 9-13 of [BE] we’ll see syntax and semantics
for first-order logic, a set of proof rules for it, and soft-
ware that lets you play with structures consisting of sets
of blocks of different types on a grid. We’ll prove (us-
ing later chapters of [BE]) that this proof system is also
sound and complete.

12



Recursive Function Theory:

Bits can be used to represent numbers (by which I gener-
ally mean non-negative integers in binary. General com-
putations may be coded as functions from numbers (or
tuples of numbers) to numbers.

Kleene’s recursive function theory defines a set of partial
recursive functions by induction. There are base func-
tions and rules for creating new functions from old ones.

It turns out that “partial recursive” corresponds to “algo-
rithmically computable”. (This is a theorem, not a defi-
nition.)

13



Primitive Recursion and Bloop

An important subset of the partial recursive functions is
the primitive recursive functions. We will define these in
terms of a simple programming language called Bloop.
(My Bloop is based on the language of the same name
in Hofstadter’s Gödel, Escher, Bach but has a different
syntax.

Variables represent numbers (non-negative integers). They
are declared and initialized to 0 when they first appear.

Statements of Bloop consist of:

� assignment statements x = ...
� the increment operator ++
� function declarations and calls (call-by-value, no re-

cursion)
� bounded loops for (x) B, where x is a variable

and B is a block of code in which x is not modified.
This code executes B exactly x times.

14



Bloop Examples:

declare one() {
x++;
return x;}

declare add(x,y) {
z = x;
for (y) z++;
return z;}

declare mult(x,y) {
for (x) add(z,y);
return z;}

15



Enriching Bloop:

� Use arithmetic expressions like variables
� Simulate if-then, if (x) B means:

y = one();
for (x) {

for (y) B;
y = 0;}

This executes B once if x is positive and otherwise
does nothing.

A function is primitive recursive iff it can be implemented
by a Bloop program.

16



Relations Among The Models:

Let’s look at a single problem. Given � input bits, we
want to know whether exactly two of them are ones. This
question can be posed in each of our models:

� Boolean: There are various ways to build an SLP or
circuit, which we’ll explore on HW#1.

� Finite-State Machine: Sweep the input string left-
to-right, remembering whether we’ve seen zero, one,
two, or more than two ones.

� First-Order Logic:
� � �

� � � � ��� � � � � ���
�
� � � ��� � � � � � � � � �

� Numerical Input: Is the input the sum of two dis-
tinct powers of two? On HW#1 you’ll write a Bloop
program to decide this.

� Abstract RAM: The problem probably defaults to
one of the others once we decide on our data repre-
sentation.

17


