
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #9: The Traveling Salesperson Problem
(Tucker Section 3.3)
David Mix Barrington
26 September 2016

The Traveling Salesperson Problem

• The Problem and its Variants

• NP-Completeness of TSP

• The Branch and Bound Algorithm

• An Example

• Approximating TSP

• Tucker’s Approximation Algorithm

• Proof that it Approximates

TSP and its Variants

• A weighted graph is a graph with a non-
negative number assigned to each edge, its
cost. A weighted directed graph has a cost
for each directed edge.

• The cost of a path is the sum of the costs of its
edges. Costs might represent distance, time,
money, or anything we might want less of.

• The traveling salesperson problem is to find
the least-cost Hamilton circuit in a weighted
graph.

Representing Weighted Graphs

• We can represent a weighted graph by a
matrix, where the (i, j) entry is the cost of the
edge from node i to node j.

• If there is no edge, the entry is ∞. More
typically, all the edges exist, though we still put
∞ on the diagonal entries to forbid loops.

• In a weighted ordinary graph, the matrix is
symmetric.

Variants of TSP

• Along with directed and undirected versions,
we sometimes require that the costs satisfy
the triangle inequality, that d(i, j) ≤ d(i, k) +
d(k, j) for any three nodes i, j, and k.

• The Euclidean TSP problem has nodes that
are points on the plane, and costs that are
Euclidean distance.

• We might also insist the graph be planar.

NP-Completeness of TSP

• TSP is one of the most famous NP-complete
problems. As we discussed earlier, this means
that there is probably no way to solve it in
time polynomial in n, the number of nodes.

• The Hamilton circuit problem is NP-complete
(see Sipser’s book for an elegant proof). It’s
easy to reduce Hamilton circuit to TSP, by
converting the input graph to a weighted
graph such that the Hamilton circuit in the
former is optimal in the latter if it exists.

The Branch & Bound Algorithm

• Tucker presents an algorithm to find an
optimal TSP in any weighted directed graph.
Of course it doesn’t scale polynomially, but it
works reasonably well on small instances,
better than an exhaustive search.

• It’s our first example of a general idea, the
branch and bound algorithm.

• We have a tree of possible partial solutions
to the problem, and we’re going to search
that tree in an intelligent way.

Branch and Bound for TSP

• With TSP, a partial solution is a set of edges
we commit to use, and a set we commit not
to use, in our tour. Call this a scenario.

• In each scenario, we will have a modified
version of the cost matrix, and a lower bound
on the cost of any tour in that scenario.

• Once we have this, we choose an edge and
branch into two new scenarios, based on
whether that new edge is forced in or out of
the tour.

Row and Column Bounds

• Consider the n by n cost matrix. Suppose
one row has all positive entries, the smallest
being x. Since any tour will use exactly one
edge out of that node, and hence one entry in
the row, x is a lower bound on the tour cost.

• If we subtract x from every entry in the row,
we get a new matrix. The optimal tour for
the new weighted graph is the same as for
the old one, with the cost reduced by x.

• The same trick works for columns.

More Branch and Bound

• We can make a tree of our scenarios, and
expand the tree at each step by looking at a
node with the smallest available bound.

• Eventually our modified matrix has a cost-0
set of edges, meaning that the original graph
has a tour with cost equal to its bound.

• We save time in our search by not
considering nodes whose bound is higher
than the cost of the actual optimal tour.

Branch & Bound Example

• Starting with the top matrix, we
subtract 3, 3, 5, and 4 from the four
rows to get the second matrix,
finding a lower bound of 15.

• Then we can subtract 1 from the
last column, to the the third matrix
which has a 0 in each row and each
column. The lower bound is now
16. Now we need to branch.

∞ 3 9 7
3 ∞ 6 5
5 6 ∞ 6
9 7 4 ∞

∞ 0 6 4
0 ∞ 3 2
0 1 ∞ 1
5 3 0 ∞

∞ 0 6 3
0 ∞ 3 1
0 1 ∞ 0
5 3 0 ∞

Branch & Bound Example

• We pick a zero entry, say the
second entry in the first row,
corresponding to edge (1,2).

• If we don’t use that edge, we get
the second matrix, from which we
can improve the lower bound to 20
by subtracting 3 from the first row
and 1 from the second column.

• We can achieve this bound with
tour 1-4-3-2, but this won’t matter.

∞ 0 6 3
0 ∞ 3 1
0 1 ∞ 0
5 3 0 ∞

∞ ∞ 6 3
0 ∞ 3 1
0 1 ∞ 0
5 3 0 ∞

∞ ∞ 3 0
0 ∞ 3 1
0 0 ∞ 0
5 2 0 ∞

Branch & Bound Example

• If we instead rule edge (1,2) into our
tour, we delete the first row and second
column to get a new matrix with rows
for 2, 3, 4 and columns for 1, 3, 4.

• We make the (2,1) entry ∞ to avoid the
cycle 1-2-1, and subtract 1 from the new
first row to make the lower bound 17.

• We can achieve this bound with tour
2-4-3-1, and this is the optimal tour.

∞ 0 6 3
0 ∞ 3 1
0 1 ∞ 0
5 3 0 ∞

0 3 1
0 ∞ 0
5 0 ∞

∞ 2 0
0 ∞ 0
5 0 ∞

Approximating TSP

• Rather than spend exponential time to get
the best tour, we can spend polynomial time
to get a pretty good tour. This is one of the
most widely studied approaches to NP-
complete problems, as seen in CS 311.

• Tucker presents a fast algorithm that will
always achieve a tour with cost at most twice
the optimum, in the case of a symmetric
matrix that satisfies the triangle inequality.

Approximating TSP

• Other algorithms approximate the optimum
very well for Euclidean TSP, getting within a
few percent of the optimum for graphs with
millions of points.

• Many “novel approaches” to NP-complete
problems fail to compete well with these.

• We’ll revisit this algorithm soon when we
discuss minimum spanning trees.

The Book’s Algorithm

• The algorithm is simple. We create a “tour”
of a single node at any vertex. Then we
successively add new vertices to the tour
until it is a Hamilton tour.

• At each step we have a cycle Cn on some of
the nodes. We find the cheapest edge from
any vertex yn in Cn to a vertex zn not in it.

• We then replace the edge out of yn in Cn
with a two-edge path through zn.

Proof that it Approximates

• The challenge will be to prove the the tour
we form in this way has at most twice the
cost of the optimal tour.

• Let C* be the optimal tour, and let S1 be the
Hamilton path formed by deleting the most
costly edge from C*.

• We’ll make successive sets of edges S2,…, Sn
by deleting one edge each time, so Sn = ∅.

• When we delete an edge of cost c from Si,
we’ll ensure cost(Ci+1) ≤ cost(Ci) + 2c.

Proof that it Approximates
• The total cost of the edges in S1 is less than

the cost of C*, so the cost of our tour Cn
must be less than twice that cost.

• Consider what happens when we alter Ci to
Ci+1 by adding a cheap edge e into node zn,

adding an edge f of unknown cost out of zn,
and removing an edge g formerly in the cycle.

• By the triangle inequality, cost(f) ≤ cost(e) +
cost(g), so what we add is at most 2⋅cost(e).

• And e was chosen to be cheapest of a set that
includes the edge we removed from Si.

