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TSP and its Variants

• A weighted graph is a graph with a non-
negative number assigned to each edge, its 
cost.  A weighted directed graph has a cost 
for each directed edge.

• The cost of a path is the sum of the costs of its 
edges.  Costs might represent distance, time, 
money, or anything we might want less of.

• The traveling salesperson problem is to find 
the least-cost Hamilton circuit in a weighted 
graph.



Representing Weighted Graphs

• We can represent a weighted graph by a 
matrix, where the (i, j) entry is the cost of the 
edge from node i to node j.

• If there is no edge, the entry is ∞.  More 
typically, all the edges exist, though we still put 
∞ on the diagonal entries to forbid loops.

• In a weighted ordinary graph, the matrix is 
symmetric.



Variants of TSP

• Along with directed and undirected versions, 
we sometimes require that the costs satisfy 
the triangle inequality, that d(i, j) ≤ d(i, k) + 
d(k, j) for any three nodes i, j, and k.

• The Euclidean TSP problem has nodes that 
are points on the plane, and costs that are 
Euclidean distance.

• We might also insist the graph be planar. 



NP-Completeness of TSP

• TSP is one of the most famous NP-complete 
problems.  As we discussed earlier, this means 
that there is probably no way to solve it in 
time polynomial in n, the number of nodes.

• The Hamilton circuit problem is NP-complete 
(see Sipser’s book for an elegant proof).  It’s 
easy to reduce Hamilton circuit to TSP, by 
converting the input graph to a weighted 
graph such that the Hamilton circuit in the 
former is optimal in the latter if it exists. 



The Branch & Bound Algorithm

• Tucker presents an algorithm to find an 
optimal TSP in any weighted directed graph.  
Of course it doesn’t scale polynomially, but it 
works reasonably well on small instances, 
better than an exhaustive search.

• It’s our first example of a general idea, the 
branch and bound algorithm.

• We have a tree of possible partial solutions 
to the problem, and we’re going to search 
that tree in an intelligent way.



Branch and Bound for TSP

• With TSP, a partial solution is a set of edges 
we commit to use, and a set we commit not 
to use, in our tour.  Call this a scenario.

• In each scenario, we will have a modified 
version of the cost matrix, and a lower bound 
on the cost of any tour in that scenario.

• Once we have this, we choose an edge and 
branch into two new scenarios, based on 
whether that new edge is forced in or out of 
the tour.



Row and Column Bounds

• Consider the n by n cost matrix.  Suppose 
one row has all positive entries, the smallest 
being x.  Since any tour will use exactly one 
edge out of that node, and hence one entry in 
the row, x is a lower bound on the tour cost.

• If we subtract x from every entry in the row, 
we get a new matrix.  The optimal tour for 
the new weighted graph is the same as for 
the old one, with the cost reduced by x.

• The same trick works for columns.



More Branch and Bound

• We can make a tree of our scenarios, and 
expand the tree at each step by looking at a 
node with the smallest available bound.

• Eventually our modified matrix has a cost-0 
set of edges, meaning that the original graph 
has a tour with cost equal to its bound.

• We save time in our search by not 
considering nodes whose bound is higher 
than the cost of the actual optimal tour.



Branch & Bound Example

• Starting with the top matrix, we 
subtract 3, 3, 5, and 4 from the four 
rows to get the second matrix, 
finding a lower bound of 15.

• Then we can subtract 1 from the 
last column, to the the third matrix 
which has a 0 in each row and each 
column. The lower bound is now 
16.  Now we need to branch.

∞ 3 9 7 
3 ∞ 6 5 
5 6 ∞ 6 
9 7 4 ∞

∞ 0 6 4 
0 ∞ 3 2 
0 1 ∞ 1 
5 3 0 ∞

∞ 0 6 3 
0 ∞ 3 1 
0 1 ∞ 0 
5 3 0 ∞



Branch & Bound Example

• We pick a zero entry, say the 
second entry in the first row, 
corresponding to edge (1,2).

• If we don’t use that edge, we get 
the second matrix, from which we 
can improve the lower bound to 20 
by subtracting 3 from the first row 
and 1 from the second column.

• We can achieve this bound with 
tour 1-4-3-2, but this won’t matter.

∞ 0 6 3 
0 ∞ 3 1 
0 1 ∞ 0 
5 3 0 ∞

∞ ∞ 6 3 
0 ∞ 3 1 
0 1 ∞ 0 
5 3 0 ∞

∞ ∞ 3 0 
0 ∞ 3 1 
0 0 ∞ 0 
5 2 0 ∞



Branch & Bound Example

• If we instead rule edge (1,2) into our 
tour, we delete the first row and second 
column to get a new matrix with rows 
for 2, 3, 4 and columns for 1, 3, 4.

• We make the (2,1) entry ∞ to avoid the 
cycle 1-2-1, and subtract 1 from the new 
first row to make the lower bound 17.

• We can achieve this bound with tour 
2-4-3-1, and this is the optimal tour.

∞ 0 6 3 
0 ∞ 3 1 
0 1 ∞ 0 
5 3 0 ∞

0 3 1 
0 ∞ 0 
5 0 ∞

∞ 2 0 
0 ∞ 0 
5 0 ∞



Approximating TSP

• Rather than spend exponential time to get 
the best tour, we can spend polynomial time 
to get a pretty good tour. This is one of the 
most widely studied approaches to NP-
complete problems, as seen in CS 311.

• Tucker presents a fast algorithm that will 
always achieve a tour with cost at most twice 
the optimum, in the case of a symmetric 
matrix that satisfies the triangle inequality.



Approximating TSP

• Other algorithms approximate the optimum 
very well for Euclidean TSP, getting within a 
few percent of the optimum for graphs with 
millions of points.

• Many “novel approaches” to NP-complete 
problems fail to compete well with these.

• We’ll revisit this algorithm soon when we 
discuss minimum spanning trees.



The Book’s Algorithm

• The algorithm is simple.  We create a “tour” 
of a single node at any vertex.  Then we 
successively add new vertices to the tour 
until it is a Hamilton tour.

• At each step we have a cycle Cn on some of 
the nodes.  We find the cheapest edge from 
any vertex yn in Cn to a vertex zn not in it.

• We then replace the edge out of yn in Cn 
with a two-edge path through zn. 



Proof that it Approximates

• The challenge will be to prove the the tour 
we form in this way has at most twice the 
cost of the optimal tour.

• Let C* be the optimal tour, and let S1 be the 
Hamilton path formed by deleting the most 
costly edge from C*.

• We’ll make successive sets of edges S2,…, Sn 
by deleting one edge each time, so Sn = ∅.

• When we delete an edge of cost c from Si, 
we’ll ensure cost(Ci+1) ≤ cost(Ci) + 2c.



Proof that it Approximates
• The total cost of the edges in S1 is less than 

the cost of C*, so the cost of our tour Cn 
must be less than twice that cost.

• Consider what happens when we alter Ci to 
Ci+1 by adding a cheap edge e into node zn, 

adding an edge f of unknown cost out of zn, 
and removing an edge g formerly in the cycle.

• By the triangle inequality, cost(f) ≤ cost(e) + 
cost(g), so what we add is at most 2⋅cost(e).

• And e was chosen to be cheapest of a set that 
includes the edge we removed from Si.


