
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #8: Trees
(Tucker Sections 3.1, 3.2)
David Mix Barrington
23 September 2016

Trees

• The Variety of Tree Definitions

• Characterizing Trees

• Counting Nodes and Leaves

• The Number of Trees on n Labels

• DFS, BFS, and Spanning Trees

• Searching State Graphs

• Traversals of Trees

The Variety of Tree Definitions

• Today we’ll talk about trees, a concept so
important to computer science that it is
covered extensively in CS 187 (data
structures) and CS 250 (discrete math).

• Much of what we’ll say today is review of that
material, but there will be one new result
about counting labeled trees.

• To start, we must deal with a number of
competing definitions of “tree”.

The Variety of Tree Definitions

• Primarily, we will view a tree as a type of
graph, one that is connected and acyclic.
The latter means that there is no simple path
(trail) from a node to itself.

• When we choose a root for such a tree, we
find that there is a unique way to direct every
edge away from the root, forming a directed
graph called a rooted tree.

• In a rooted tree we use “family” language to
describe nodes as parents, children, etc.

Trees and Recursion

• A rooted tree can be defined as a node (the
root) with edges to zero or more more
nodes (its children), each of which is the root
of a rooted tree.

• The tree is binary if every node has either
zero or two children (though sometimes we
allow one child).

• A leaf is a node with no children, and other
nodes are called internal nodes.

An Example

• Here is an 8-node tree, with
7 edges.

• If we made 7 the root, it
would have children 1, 6, and
8, and the other nodes
would be grandchildren.

• If 5 were the root it would
have an only child and nodes
2 and 3 would be at depth 4.

Characterizing Trees

• Here are four properties of a connected graph:

• (a) acyclic: there are no circuits

• (b) ∃x:∀y: unique path from x to y

• (c) ∀x:∀y: unique path from x to y

• (d) minimally connected: removing any edge
disconnects the graph

• We can prove that (a) → (d) → (b ↔ c) → (a),

and each step of this is pretty easy.

Characterizing Trees

• ¬(d) → ¬(a): If you can remove (x, y) and
leave a connected graph, you have a circuit

• ¬(c) → ¬(d): If you have distinct paths from x
to y, you can remove an edge on one of them
and still have the other to connect the graph

• (c) ↔ (b): (c) → (b) is trivial, and given (b)

you can use those paths to prove (c)

• ¬(a) → ¬(c): A circuit yields two paths.

Counting Nodes and Leaves

• It’s easy to show by induction that an n-node
tree has exactly n-1 edges.

• Similarly, an m-ary tree with i internal nodes
must have exactly n = mi + 1 nodes and so
the number of leaves is (m-1)i + 1.

• A balanced m-ary tree of depth h has exactly
mh leaves and (mh-1)/(m-1) internal nodes.

• We can use this in applications.

Binary Search

• If we have n items in an array and they are in
order, we can find a given item (or prove its
absence) in ceiling(log(n+1)) queries. This is
because the items are at leaves of a balanced
binary tree.

• In a binary search tree we store an item at
each node of a binary tree, not necessarily
balanced. If we don’t find an item at a node,
we know which of the two subtrees to search.
This is O(log n) time if we are balanced.

How Many Trees on n Labels?
• Here’s another counting problem, solved by

Cayley in 1889. If we have n nodes, labeled 1
through n, how many ways are there to
combine them into a tree?

• For n=1 and n = 2 all trees are isomorphic.

• For n=3, any of the three nodes could be in
the middle, so there are 3 trees.

• For n=4, there are 4 choices of a root for a
star graph, and 12 ways to arrange a line.

• We have f(2) = 20, f(3) = 31, and f(4) = 42.

How Many Trees on n Labels?

• Cayley’s theorem says that there are exactly
nn-2 trees on n labels.

• Our proof constructs a bijection between
labeled trees with n nodes and Prufer
sequences, which are sequences of n-2 labels.

• We need to go from tree to sequence and
from sequence to tree.

Tree to Sequence

• The first element of the sequence
is the label of the neighbor of the
lowest numbered leaf, here 7.

• We then delete the leaf and
continue. The neighbor of the new
lowest numbered leaf is 6.

• Now the lowest leaf is 3, with
neighbor 6, followed by 4, with
neighbor 8, 5 with neighbor 8, and
6 with neighbor 7, for 7-6-6-8-8-7.

Sequence to Tree

• To illustrate the map in the
other direction, we’ll build the
7-node tree with Prufer
sequence 2-7-3-3-6.

• We know that 1, 4 and 5 are
leaves because they are not in
the sequence.

• 1 is the lowest leaf and thus has
neighbor 2.

1 2

2-7-3-3-6

Sequence to Tree

• 1 is the lowest leaf and thus has
neighbor 2.

• Now we consider 2, 4, and 5 to be
the leaves. The lowest is 2, which
thus has neighbor 7.

• Now the leaves are 4, 5, and 7. The
lowest is 4, which has neighbor 3.
This makes our leaves 5 and 7.

• 3 is still in the sequence and thus
still an internal node.

1 2

2-7-3-3-6

34

7

Sequence to Tree

• The leaves are 5 and 7.

• 5 is lowest and has neighbor 3.

• Now 3 and 7 are leaves.

• 3 is lowest and has neighbor 6.

• We connect the final leaves, 6
and 7, and we are done.

• The reverse process gives us
2-7-3-3-6.

1 2

2-7-3-3-6

3 54

7
6

DFS, BFS, and Spanning Trees

• Any connected graph has one or more
spanning trees, which are subgraphs that
form trees containing all the nodes.

• The familiar DFS and BFS algorithms each
produce a spanning tree, with edges from
each newly discovered vertex to the vertex
from which it was first found.

• These algorithms also test for connectedness
because they search the whole connected
component of the start node.

DFS, BFS, and Spanning Trees

• Running a DFS or BFS takes O(e) time, where
e is the number of edges. (If, that is, we store
the graph as a list rather than as a matrix.)

• The DFS and BFS trees can then be used to
answer other questions about the graph.

• The BFS tree contains shortest paths from
the start node to every other node.

• But DFS is in general more space-efficient.

Searching State Graphs

• Many solitaire puzzles can be modeled by a
directed graph, where each node represents a
state and an edge represents a legal move.

• Once you have the graph, you can DFS or BFS
to find a path to the (or a) goal node.

• Or if you can’t represent the whole graph, you
can explore it node by node, though you
might waste time revisiting.

• DFS in this setting is called backtrack search.

Searching a Maze

• A maze like the one below may be modeled
as a graph, a subgraph of a Manhattan grid
graph like we saw on HW#1. We make a
node for the center of each square, and an
edge whenever two squares have no wall
between them.

Many mazes, like this one, have
the property that the walls
form only two connected
components. This turns DFS
into the “right-hand rule”.

Pitcher Pouring

• You have three pitchers, a full one of size 10 and
empty ones of size 7 and 4, and you need to
measure 2 units of water. You may pour from
one pitcher to another until the former is empty
or the latter is full.

• A state of the system is a triple (i, j, k) saying
how much is in each pitcher. We start at (10, 0,
0) and want to get to (i, 2, k) or (i, j, 2).

• We just make a graph, and a BFS will find us the
shortest possible sequence of moves.

Pitcher Pouring

• For the first two
moves, there are
multiple options, but
in the third and fourth
moves most choices
lead to previously
seen states.

• We reach a goal state
in four moves.

10,0,0

6,0,4 3,7,0

0,6,46,4,0

2,4,4

3,3,40,7,3

4,6,0 7,0,3 7,3,0

2,7,1 4,2,4

Missionaries and Cannibals

• This politically incorrect puzzle has three
missionaries and three cannibals on one
shore of a river, and a two-person boat.

• The forbidden states are to have one or
missionaries outnumbered by cannibals on
one shore.

• A state consists of the number of m’s and the
number of c’s on the near shore, plus a bit to
say where the boat is.

Missionaries and Cannibals

• We call the start state (3,3)*, and the goal
state (0,0).

• The forbidden states are (1, 0), (1, 2), (1, 3),
(2,0), (2,1), (2,3), and the same states starred.
The move set is {m, mm, mc, c, cc}.

• Tucker gives a solution with eleven moves.

• This puzzle is small enough to graph by hand
and find the path by eye, but a BFS would be
guaranteed to find the shortest path.

Mandatory xkcd Reference

• In this classic problem
there are 16 states, and
some are excluded.

• If we wanted to finish we
could return with the
goat, take the wolf, and
return for the goat
leaving the wolf and
cabbage safely together.

xkcd.com/1134

http://xkcd.com/1134

Tree Traversals

• We recall the definitions of pre-order, in-
order, and post-order traversals, recursively
on the structure of a rooted tree.

• In a binary search tree, the order of stored
elements is in-order.

• In a DFS or BFS, we view the elements in pre-
order applied to the spanning tree.

• Arithmetic expressions are usually written by
humans in infix notation and converted to
postfix to be evaluated by machines.

