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The Variety of Tree Definitions

• Today we’ll talk about trees, a concept so 
important to computer science that it is 
covered extensively in CS 187 (data 
structures) and CS 250 (discrete math).

• Much of what we’ll say today is review of that 
material, but there will be one new result 
about counting labeled trees.

• To start, we must deal with a number of 
competing definitions of “tree”.



The Variety of Tree Definitions

• Primarily, we will view a tree as a type of 
graph, one that is connected and acyclic. 
The latter means that there is no simple path 
(trail) from a node to itself.

• When we choose a root for such a tree, we 
find that there is a unique way to direct every 
edge away from the root, forming a directed 
graph called a rooted tree.

• In a rooted tree we use “family” language to 
describe nodes as parents, children, etc.



Trees and Recursion

• A rooted tree can be defined as a node (the 
root) with edges to zero or more more 
nodes (its children), each of which is the root 
of a rooted tree.

• The tree is binary if every node has either 
zero or two children (though sometimes we 
allow one child).

• A leaf is a node with no children, and other 
nodes are called internal nodes.



An Example

• Here is an 8-node tree, with 
7 edges.

• If we made 7 the root, it 
would have children 1, 6, and 
8, and the other nodes 
would be grandchildren.

• If 5 were the root it would 
have an only child and nodes 
2 and 3 would be at depth 4.



Characterizing Trees

• Here are four properties of a connected graph:

• (a) acyclic: there are no circuits

• (b) ∃x:∀y: unique path from x to y

• (c) ∀x:∀y: unique path from x to y

• (d) minimally connected: removing any edge 
disconnects the graph

• We can prove that (a) → (d) → (b ↔ c) → (a), 

and each step of this is pretty easy.



Characterizing Trees

• ¬(d) → ¬(a):  If you can remove (x, y) and 
leave a connected graph, you have a circuit

• ¬(c) → ¬(d): If you have distinct paths from x 
to y, you can remove an edge on one of them 
and still have the other to connect the graph

• (c) ↔ (b): (c) → (b) is trivial, and given (b) 

you can use those paths to prove (c)

• ¬(a) → ¬(c): A circuit yields two paths.



Counting Nodes and Leaves

• It’s easy to show by induction that an n-node 
tree has exactly n-1 edges.

• Similarly, an m-ary tree with i internal nodes 
must have exactly n = mi + 1 nodes and so 
the number of leaves is (m-1)i + 1. 

• A balanced m-ary tree of depth h has exactly 
mh leaves and (mh-1)/(m-1) internal nodes.

• We can use this in applications.



Binary Search

• If we have n items in an array and they are in 
order, we can find a given item (or prove its 
absence) in ceiling(log(n+1)) queries.  This is 
because the items are at leaves of a balanced 
binary tree.

• In a binary search tree we store an item at 
each node of a binary tree, not necessarily 
balanced.  If we don’t find an item at a node, 
we know which of the two subtrees to search.  
This is O(log n) time if we are balanced.



How Many Trees on n Labels?
• Here’s another counting problem, solved by 

Cayley in 1889.  If we have n nodes, labeled 1 
through n, how many ways are there to 
combine them into a tree?

• For n=1 and n = 2 all trees are isomorphic.

• For n=3, any of the three nodes could be in 
the middle, so there are 3 trees.

• For n=4, there are 4 choices of a root for a 
star graph, and 12 ways to arrange a line.

• We have f(2) = 20, f(3) = 31, and f(4) = 42.



How Many Trees on n Labels?

• Cayley’s theorem says that there are exactly 
nn-2 trees on n labels.

• Our proof constructs a bijection between 
labeled trees with n nodes and Prufer 
sequences, which are sequences of n-2 labels.

• We need to go from tree to sequence and 
from sequence to tree.



Tree to Sequence

• The first element of the sequence 
is the label of the neighbor of the 
lowest numbered leaf, here 7.

• We then delete the leaf and 
continue.  The neighbor of the new 
lowest numbered leaf is 6.

• Now the lowest leaf is 3, with 
neighbor 6, followed by 4, with 
neighbor 8, 5 with neighbor 8, and 
6 with neighbor 7, for 7-6-6-8-8-7.



Sequence to Tree

• To illustrate the map in the 
other direction, we’ll build the 
7-node tree with Prufer 
sequence 2-7-3-3-6.

• We know that 1, 4 and 5 are 
leaves because they are not in 
the sequence.

• 1 is the lowest leaf and thus has 
neighbor 2.

1 2

2-7-3-3-6



Sequence to Tree

• 1 is the lowest leaf and thus has 
neighbor 2.

• Now we consider 2, 4, and 5 to be 
the leaves.  The lowest is 2, which 
thus has neighbor 7.

• Now the leaves are 4, 5, and 7. The 
lowest is 4, which has neighbor 3.  
This makes our leaves 5 and 7.  

• 3 is still in the sequence and thus 
still an internal node.

1 2

2-7-3-3-6

34

7



Sequence to Tree

• The leaves  are 5 and 7.

• 5 is lowest and has neighbor 3.

• Now 3 and 7 are leaves.

• 3 is lowest and has neighbor 6.

• We connect the final leaves, 6 
and 7, and we are done.

• The reverse process gives us 
2-7-3-3-6.

1 2

2-7-3-3-6

3 54

7
6



DFS, BFS, and Spanning Trees

• Any connected graph has one or more 
spanning trees, which are subgraphs that 
form trees containing all the nodes.

• The familiar DFS and BFS algorithms each 
produce a spanning tree, with edges from 
each newly discovered vertex to the vertex 
from which it was first found.

• These algorithms also test for connectedness 
because they search the whole connected 
component of the start node.



DFS, BFS, and Spanning Trees

• Running a DFS or BFS takes O(e) time, where 
e is the number of edges. (If, that is, we store 
the graph as a list rather than as a matrix.)

• The DFS and BFS trees can then be used to 
answer other questions about the graph.

• The BFS tree contains shortest paths from 
the start node to every other node.

• But DFS is in general more space-efficient.



Searching State Graphs

• Many solitaire puzzles can be modeled by a 
directed graph, where each node represents a 
state and an edge represents a legal move.

• Once you have the graph, you can DFS or BFS 
to find a path to the (or a) goal node.

• Or if you can’t represent the whole graph, you 
can explore it node by node, though you 
might waste time revisiting.

• DFS in this setting is called backtrack search.



Searching a Maze

• A maze like the one below may be modeled 
as a graph, a subgraph of a Manhattan grid 
graph like we saw on HW#1.  We make a 
node for the center of each square, and an 
edge whenever two squares have no wall 
between them.

Many mazes, like this one, have 
the property that the walls 
form only two connected 
components.  This turns DFS 
into the “right-hand rule”.



Pitcher Pouring

• You have three pitchers, a full one of size 10 and 
empty ones of size 7 and 4, and you need to 
measure 2 units of water.  You may pour from 
one pitcher to another until the former is empty 
or the latter is full.

• A state of the system is a triple (i, j, k) saying 
how much is in each pitcher.  We start at (10, 0, 
0) and want to get to (i, 2, k) or (i, j, 2).

• We just make a graph, and a BFS will find us the 
shortest possible sequence of moves.



Pitcher Pouring

• For the first two 
moves, there are 
multiple options, but 
in the third and fourth  
moves most choices 
lead to previously 
seen states.

• We reach a goal state 
in four moves.

10,0,0

6,0,4 3,7,0

0,6,46,4,0

2,4,4

3,3,40,7,3

4,6,0 7,0,3 7,3,0

2,7,1 4,2,4



Missionaries and Cannibals

• This politically incorrect puzzle has three 
missionaries and three cannibals on one 
shore of a river, and a two-person boat.

• The forbidden states are to have one or 
missionaries outnumbered by cannibals on 
one shore.

• A state consists of the number of m’s and the 
number of c’s on the near shore, plus a bit to 
say where the boat is.



Missionaries and Cannibals

• We call the start state (3,3)*, and the goal 
state (0,0).

• The forbidden states are (1, 0), (1, 2), (1, 3),
(2,0), (2,1), (2,3), and the same states starred.  
The move set  is {m, mm, mc, c, cc}.

• Tucker gives a solution with eleven moves.

• This puzzle is small enough to graph by hand 
and find the path by eye, but a BFS would be 
guaranteed to find the shortest path.



Mandatory xkcd Reference

• In this classic problem 
there are 16 states, and 
some are excluded.

• If we wanted to finish we 
could return with the 
goat, take the wolf, and 
return for the goat 
leaving the wolf and 
cabbage safely together.

xkcd.com/1134

http://xkcd.com/1134


Tree Traversals

• We recall the definitions of pre-order, in-
order, and post-order traversals, recursively 
on the structure of a rooted tree.

• In a binary search tree, the order of stored 
elements is in-order.  

• In a DFS or BFS, we view the elements in pre-
order applied to the spanning tree.

• Arithmetic expressions are usually written by 
humans in infix notation and converted to 
postfix to be evaluated by machines.


