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Chromatic Number of a Graph

• As we mentioned earlier, coloring 
the regions of a map, without 
neighboring regions sharing a 
color, corresponds to a graph 
problem.

• We make a node for each region 
and an edge between neighboring 
regions.

• The New England map can be 
done with 3 colors but not 2.



Chromatic Number of a Graph
• A vertex coloring of a graph is a 

labeling of the vertices with 
colors such that no vertices that 
share an edge also share a color.

• An edge coloring is a labeling of 
the edges with colors such that 
no two edges of the same color 
share a vertex.

• The chromatic number of a 
graph is the minimum number of 
colors in any vertex coloring.



Chromatic Number of a Graph

• Appel and Haken proved in 1976 that 
ever planar graph can be 4-colored, 
confirming a conjecture from 1852.  
Their proof used a computer and an 
analysis with 1936 cases to check.

• It turns out that for graphs embedded 
on a torus, seven colors are 
necessary and sufficient.  The graph of 
the map at left is K7, if we identify the 
boundary edges as shown.



Applications of Coloring

• We already had an example in Section 1.1 
where we reduced a combinatorial problem to 
graph coloring.

• We wanted to schedule meetings of as many 
committees as possible, without giving any 
member two meetings at the same time.

• We have a node for each committee and an 
edge for every pair of committees that share a 
member.  The chromatic number of this graph 
is the total number of time slots needed.



Basic Examples

• The only connected graph with chromatic 
number of 1 is the graph with one node and 
no edges.

• We’ve already seen that a graph can be 2-
colored if and only if it has no odd cycle.

• The graph Kn has chromatic number n.

• In a k-coloring, any vertex of degree < k is 
easy to color whatever happens elsewhere.



Coloring a Wheel

• The wheel graph Wn has n-1 
nodes in a cycle and the nth node 
connected to each of the others.

• It is easy to see that Wn has 
chromatic number 3 if n is odd 
and 4 if n is even.

• The map of the continental USA 
cannot be 3-colored because it 
contains a W6 around Nevada.



NP-Completeness Overview

• Appendix A.5 of Tucker gives an informal 
overview of NP-completeness, a concept 
dealt with here in CS 311 and CS 501.

• The NP-complete problems have no solutions 
in polynomial time, unless the statement P = 
NP is true, meaning that all problems whose 
solutions are verifiable in poly-time are 
actually solvable in poly-time.  Few people 
believe this is true, but proving so is one of 
the most famous open problems in math.



NP-Completeness Overview
• The way we prove something NP-complete is 

to take a known NP-complete problem and 
show that a poly-time solution to our 
problem with also solve that.

• The original NP-complete problem is called 
satisfiability.  We’ll look at a variant of it 
called 3-SAT.

• Given n boolean variables and a number of 
clauses of the form L1 ∨ L2 ∨ L3, where the 
Li’s are variables or negated variables, can we 
set the variables to make all the clauses true?



3-Colorability

• Here’s Example 2 of section 2.3 in 
Tucker, a non-3-colorable graph.

• In any 3-coloring, the two middle 
nodes must have different colors, 
so the two nodes I have in green 
must be the same color.

• That forces the two side points to 
also be green, but they are 
connected to one another.



3-Colorability

• Given n variables, we make a node for 
each literal and force each of those 
nodes to be red or blue.

• Then, for each clause, we connect a 
copy of the gadget at right to the 
three literals of that clause.  We force 
all the purple nodes to be red or blue.

• If all three lower nodes become red, 
the top node cannot be blue.  We can 
finish only if the clause is satisfied.



Application to Garbage Trucks

• In Example 5 of Section 2.3, Tucker explains a 
problem on which he consulted for the NYC 
government.  They wanted routes for garbage 
trucks that did not conflict and met certain 
constraints.

• They could construct short legal tours, and 
wanted to combine them into longer ones, but 
needed to assign each tour to a day of the 
week to avoid conflicts.



Application to Garbage Trucks

• Assigning tours to days meant six-coloring a 
graph where the nodes were tours and edges 
were pairs of tours that shared a point.

• Combining two tours into one meant 
collapsing an edge to merge two vertices.  
Their algorithm did this as much as it could, 
while leaving the remaining graph 6-colorable.



Scheduling Tournaments

• Our last application involves round-robin 
tournaments again.  We have n teams, each of 
which plays each of the others once, and we 
want to assign each match a day so that no 
team plays twice on the same day.

• This means giving an edge coloring of the 
complete graph Kn.  The total number of 
edges to color is n(n-1)/2.

• We cannot have more than n/2 edges of a 
single color, since each team plays only once.



Scheduling Tournaments

• For even n, n(n-1)/2 edges with n/
2 to a color means n-1 colors.  
With n = 6, we have a 5-coloring 
at right, and similar colorings are 
possible for any even n.

• For odd n, we have at most (n-1)/
2 edges per color and so need at 
least n colors, which is doable for 
any odd, n similar to this picture.


