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Euler and Hamilton Circuits

• Multigraphs, Trails, and Cycles

• The Königsberg Bridge Problem

• Euler Paths and Cycles

• Proofs of the Euler Cycle Theorem

• Hamilton Paths and Circuits

• Ruling Out Hamilton Circuits

• Hamilton Paths in Tournaments



Multigraphs

• We’ve defined graphs and directed graphs to 
forbid parallel edges.

• But there are many situations where there 
are multiple ways to go from x to y in one 
step, and it matters which we take.

• A multigraph is a vertex set together with a 
set of undirected edges, where more than 
one edge might connect the same pair of 
vertices.  A directed multigraph is similar.



Trails and Cycles

• A trail is a sequence of edges in a multigraph, 
where each edge connects to the next one.  
The same edge may not be used more than 
once, but parallel edges may be used.

• A cycle is a nonempty trail that begins and 
ends on the same vertex.  In an ordinary 
undirected graph, a cycle is a path of three or 
more edges (none repeated) that goes from a 
vertex to itself.  (Thus trees have no cycles.)



The Königsberg Bridges

• The city of Königsberg had two 
islands and seven bridges as 
shown.  The citizens wondered 
whether it was possible to take a 
single walk using each bridge 
exactly once.

• Fortunately the great Leonhard 
Euler lived in the city, and could 
tell them this was impossible.



Euler Paths and Cycles

• An Euler path in a multigraph is a trail 
that uses all the edges.  If we added 
another bridge from B to C, we could 
have an Euler path going A-B-C-B-D-C-
A-B-D.   Note the two A-B, two B-C, 
and two B-D steps.

• An Euler cycle is an Euler path that 
returns to its starting point.  If we 
added another bridge from A to D, we 
could extend the path above to a cycle.



Proving Euler’s Cycle Theorem

• Euler’s great insight was that the possibility of a 
path of cycle depended only on what we would 
call the multigraph of the bridges.  The key to 
the solution is the degrees of the nodes.

• In any Euler cycle, every node is entered 
exactly the same number of times it is left.  
Therefore the number of edges used, which 
must be the degree of the node, is even.

• In an Euler path from x to y, x and y have odd 
degree and all other nodes have even degree.



Proving Euler’s Cycle Theorem

• But that’s only half of the proof.  We have 
only shown that if an Euler path or cycle 
exists, then the degree condition must hold.

• How do we construct a path if the condition 
holds?  By induction on the number of edges 
in the multigraph.

• The base case is one node with no edges, for 
which we will allow the trivial cycle.

• Suppose we have n edges, and all connected 
multigraphs with fewer satisfy the theorem.



Proving Euler’s Cycle Theorem

• Assume all nodes have even degree. Start at 
any node.  Take an edge.  Take a following 
edge.  (The new node now has an odd 
number of edges left, so there is one.)

• Keep going until you return to the start point

• You have to, because every new node you 
reach except the start point has an odd 
number of edges left, so you can keep going, 
and you can’t keep going forever.



Proving Euler’s Cycle Theorem

• Now you have a cycle, plus perhaps some 
remaining edges.  Each node in the graph of 
remaining edges has even degree.

• This graph may not be connected, but by our IH 
each component of it must have an Euler path.  
And our cycle must reach each component 
because the first graph was connected. We just 
stitch all these cycles together.

• If we start with x and y of odd degree, start the 
first cycle at x and it can only end at y.



Hamilton Paths and Circuits

• In the 19th century 
William Hamilton 
marketed a puzzle 
where you were asked 
to find a tour of a 
dodecahedron, visiting 
each vertex exactly 
once.  This is in fact 
possible.



Hamilton Paths and Circuits

• The knight’s tour problem 
asks whether a chess knight 
can visit all 64 squares in 64 
moves, returning to the start.

• This asks for a Hamilton 
circuit of the knight-move 
graph.

• A Hamilton path need not 
return to its start point.



Testing Hamiltonicity

• It turns out that given a graph with n vertices, 
there is no known way to decide in a time 
polynomial in n whether there is a Hamilton 
path or circuit.

• The problem is NP-complete, because given 
any instance of the satisfiability problem, you 
can cook up a graph that has a Hamilton path 
if and only if the given formula is satisfiable.  
(If you haven’t taken 311 or 501, we’ll explain 
more about this later in the course.)



Testing Hamiltonicity

• In particular, there is presumably no easy 
condition, like the one for Euler circuits, that 
tells you whether a Hamilton path exists.

• But we can use our same general method to 
find this out on reasonably small graphs.  We 
try to construct a path, keeping track of all 
choices that we make while doing so.  

• If we succeed, then a path exists.  If every 
choice leads to failure, it doesn’t.



Ruling Out Hamilton Circuits

• If a node has degree 2, any 
Hamilton cycle must enter it 
on one edge and leave it on 
the other.  So in the top 
graph, any tour must contain 
a-b-c or c-b-a, and is stuck.

• Tucker gives a more 
complicated argument for the 
bottom graph.  The red edges 
are forced to be in any cycle.
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Theorems About H-Circuits

• If a graph has n vertices and every vertex has 
degree ≥ n/2, it has a Hamilton circuit.

• If G has a circuit H, and we draw G in the 
plane, let ri be the number of regions of 
degree r inside the circuit, and riʹ be the 
number of such regions outside.  Then         
Σi (i - 2)(ri - riʹ) = 0.  Tucker uses this to show 
that a graph with three 4-regions and six 6-
regions cannot have a Hamilton circuit.



Hamilton Paths in Tournaments

• Here’s a theorem we can prove, involving 
Hamilton paths in directed graphs.

• A tournament on n nodes is a directed graph 
obtained by assigning a direction to every 
undirected edge in a Kn.  This can encode the 
results of a round-robin tournament among n 
teams, where games cannot end in ties.

• We’ll show that every tournament has a 
directed Hamilton path.



Hamilton Paths in Tournaments

• We use induction on n.  If n = 1, the trivial 
path is a Hamilton path.  If n = 2, the path 
consisting of the single edge is Hamilton.

• A tournament on n+1 nodes can be obtained 
by taking a tournament on n nodes, adding a 
new node, and adding an edge from the new 
node to or from each other vertex.

• Assume we have such a graph and let P = v1-
v2-…-vn be the Hamilton path on the n-node 
tournament given by the IH.



Hamilton Paths in Tournaments

• Let x be the new node.  If the edge between 
x and v1 goes from x, we win, because we can 
start a path with that edge and follow with P.

• Similarly if the edge between x and vn goes to 
x, we win with P followed by that edge.

• If neither of these happen, there must be 
some vertex vi such that the directed edges 
from vi to x and from x to vi+1 are in the 
graph.  We can splice x into P using these two 
edges, removing the edge from vi to vi+1.


