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Conway’s Number System

• Review: Games and Numbers

• Single-Stalk Hackenbush

• What are Real Numbers?

• Infinitesimals

• Ordinals

• The Games “Up” and “Down”

• Multiplying Numbers



Conway’s Combinatorial Games

• Conway recursively defines a game to be a 
set of left options and a set of right options, 
each of which is a game.

• The base case of the recursion is the zero 
game with no options for either player (so 
that the second player wins).

• Any game must end in a finite (but possibly 
unbounded) number of moves, even if it has 
infinitely many states.



The Order on Games

• Given any game, there is a winner under 
optimal play if Left moves first, and a winner 
under optimal play if Right moves first.

• A game where Left wins in both scenarios is 
called positive, and one where Right wins both 
is called negative.  One where the first player 
wins is called fuzzy, and one where the second 
player wins is called a zero game.

• Non-partisan games, where both players have 
the same options, are always zero or fuzzy.



The Order on Games

• We define a partial order on games denoted by 
the usual symbols >, ≥, =, ≤, and <.

• Any game G has an additive inverse -G made by 
switching the roles of Left and Right. Using the 
game sum operation, G + (-G) is always a zero 
game.

• Given two games G and H, we say that G > H if G 
- H is positive, and that G < H if G - H is negative.  
If G - H is a zero game, we say G = H, and if G - 
H if fuzzy, G and H are called confused.



Some Games are Numbers

• We proved the Sprague-Grundy Theorem, 
that any finite impartial game is equal to a 
single-pile Nim game.  The value of such a 
game is called a nimber, written *k for a pile 
of k stones.

• Some partisan games have values called 
numbers, and today we will look at the 
resulting system of numbers (called surreal 
numbers).



Some Games are Numbers

• For a game G to be a number, each of its left 
and right options (if any) must be a number, and 
every left option must be less than every right 
option according to the order we defined.

• It will follow that numbers are totally ordered 
by the ordering, so that two numbers are always 
comparable, never confused.

• There may by infinitely many left or right 
options, as long as the recursion is grounded to 
prevent any infinite play of a game.



Examples of Numbers

• The canonical zero game, with no left or right 
options at all, is a number that we will call 0.

• The game {0|}, where Left can move to the 
zero game and Right cannot move, is another 
number called 1.  Its additive inverse {|0} is 
called -1.

• The Nim game with one pile of one stone 
can be written {0|0}.  It is not a number since 
it has a left option that is ≥ one of its right 
options.  Its value is written * or *1.



Examples of Numbers

• What if we add two copies of 1?  Left can 
move to 0 in one copy, leaving a result of 1, 
and Right cannot move at all.  This leads to 
the game {1|}, which we call 2.

• A Hackenbush stalk with two edges, both 
blue, gives us the game {1, 0|}, and this is equal 
to {1|} since the move to 0 is dominated.

• Similarly we have games for all integers, both 
positive and negative, since {n|0} = n+1 and  
{|-n} = -(n+1), for any positive n.



Examples of Numbers

• Last time we had examples of Hackenbush 
and Domineering positions where the game 
amounted to {1|0}.  We showed that two 
copies of such a game have total value 1, so 
each copy has a value we can call 1/2.

• Similarly {0|1/2} = 1/4 and {1/2|1} = 3/4.

• Note that the value of a game must be 
greater than all its left options and less than 
all its right options.  In general, the value of a 
game is the simplest number meeting this.



Single-Stalk Hackenbush

• For my own convenience, I’ll describe a single-
stalk Hackenbush game by a string of B’s and 
R’s for the blue and red edges, starting from 
the ground. (BRBRR for this stalk.)

• Each additional B increases the value, and each 
R reduces it.  Later edges cannot wholly 
reverse the effect of an earlier one.  (For 
example, if the first edge is B the value 
remains positive.)

• If we start BnR the value is between n-1 and n.



Single-Stalk Hackenbush
• Every finite string has a value that is a dyadic 

rational, with denominator a power of two.

• What about infinite stalks?  The value would 
appear to be the limit of the values of the 
initial segments, so that we can get real 
numbers like 1/3 with BRRBRBRBRB… as the 
limit of a sequence of dyadic rationals.

• But while the limit of the sequence 1/2, 1/4, 
1/8,… is exactly 0, the value of BRRRRR… is 
not 0 but positive.  Still, it’s less than any 
positive real number!  (Left still always wins.)



What are Real Numbers?

• We usually think of real numbers as given by 
infinite decimal or binary expansions, with the 
caveat that in binary, expansions like 
0.011000… and 0.010111… represent the 
same real number.

• Formally, irrational reals are defined by 
Dedekind cuts of the rationals.  These are 
partitions of the rationals into two sets L and 
R where every element of L is less than every 
element of R.



Single-Stalk Hackenbush

• Every finite single-stalk Hackenbush stalk has 
a dyadic rational value.

• Every infinite stalk with infinitely many blues 
and infinitely many reds has a value that is a 
real number other than a dyadic rational, 
given by the limit of the initial segment values.

• And every infinite stalk with only finitely 
many blues represents a value that is 
infinitesimally larger than a dyadic rational.  
With finitely many reds it is just a bit smaller.



A Brief History of Calculus

• Newton and Leibniz independently invented 
calculus in the 1600’s.  Leibniz’ formulation, in 
particular, used quantities like “dx” and “dy” 
as if they were real numbers. 

• Berkeley in the 1700’s pointed out that these 
infinitesimal objects made no sense, as they 
disobeyed all the rules for real numbers.  
Despite having no sound logical basis, though, 
calculus continued to be used.



A Brief History of Calculus

• In the 1800’s, Cauchy, Weierstrass, and 
Riemann developed the theory of limits (and 
𝜺/δ proofs) that we use today.

• In the mid-1900’s, Robinson developed a 
rigorous theory of infinitesimals, essentially a 
new number system that included both real 
numbers and infinitesimals.  In this system, 
Leibniz’ arguments work perfectly well.



Infinitesimals

• We’ve seen that the Hackenbush single stalk 
BRRRRR…. has a positive value that is 
smaller than that of any positive real number.

• There’s also BBBB…. a positive value larger 
than any real number.  And these numbers 
have additive inverses, and can be added 
together to get numbers.  Two stalks each of 
BRRR…, for example, have a positive value 
larger than one BRRR… but still smaller than 
any positive real number.



Ordinals

• In set theory, the ordinal numbers are defined 
by starting with 0 and applying two rules.  You 
can add 1 to any ordinal, and if you have any 
sequence x0 < x1 < x2 <… indexed by any 
ordinal, it has a limit larger than all of them.

• The limit of the natural numbers, the first infinite 
ordinal, is called ω.  After that you have ω+1, ω
+2,…, which lead to a limit ω+ω = 2ω.  Then 
you get 3ω, 4ω, 5ω,…, which lead to a limit 
ω⋅ω = ω2.



Ordinals

• Similarly you can get ω2, ω3, ω4,…, leading to  

ωω, ω to the power ωω, and other things I 
can’t write with this editor.

• All of these ordinals are countable.  As sets, 
they have isomorphisms to the natural 
numbers, but as ordinals they are different 
because they have no order-preserving 
isomorphisms.

• The limit of the countable ordinals is called 
ω1, the first uncountable ordinal.



Ordinals as Conway Numbers

• If I have any sequence of numbers x1, x2, x3,…, 
I can define a game where Left can move to 
any one of them.  The resulting game has 
value that is a number larger than any xi.

• Thus there is a game (and a number) with any 
ordinal value, and we can define it as a 
Hackenbush game with only blue edges.

• But that’s only the start of the strangeness.



Some Strange Numbers

• Ordinals can be added and multiplied, but not 
subtracted or divided.  We know that games 
can be subtracted, and subtracting numbers 
gives us more numbers.  

• That means ω-7 and ω2-39ω+6 are perfectly 
good numbers, values of well-defined games.  
(We won’t do it here, but √ω can be defined 
as well, once we have multiplication.)

• Our value for BRRR… turns out to be 1/ω.



The Games “Up” and “Down”

• One of the simplest games is {0|*}, 
where * is the nimber {0|0}.  It’s the 
value of the Domineering position 
pictured here.  

• Because * is not a number, this value ↑, 
called “up”, is not a number either.  But 
it is positive, and less than every positive 
number.  Its inverse ↓, called “down”, is 
greater than every negative number but 
still negative.



Multiplying Numbers

• The numbers have a multiplication operation, 
making them a field.  (Conway says “Field” to 
emphasize that the numbers are too big to be 
a set in set theory.)

• Unfortunately this operation, unlike addition, 
does not have an intuitive meaning in terms 
of games.  But we’ll have a go at the 
definition.



Multiplying Numbers

• Remember that if xR is a right option of the 
number x, its value is greater than that of x.  
And any left option xL has a smaller value. 
With numbers, moving always hurts you.

• This means that (x - xL) and (xR - x) are 
positive numbers for any number x.  

• If x and y are any two numbers with left 
options xL and yL, and multiplication made any 
sense, then (x - xL)(y - yL) should also be 
positive.



Multiplying Numbers

• For (x - xL)(y - yL) > 0 to be true, we must 
have xy > xLy + xyL - xLyL.

• For (x - xL)(yR - y) > 0 to be true, we must 
have xy < xyR + xLy - xLyR.

• Similarly we must have xy > xRy + xyR - xRyR 
and xy < xRy + xyL - xRyL.

• We force all four of these to be true by 
defining xy = {xLy+xyL-xLyL, xRy+xyR-xRyR | 
xyR+xLy-xLyR, xRy+xyL-xRyL}.



Multiplying Numbers

•  We force all four of these to be true by 
defining xy = {xLy+xyL-xLyL, xRy+xyR-xRyR | xyR

+xLy-xLyR, xRy+xyL-xRyL}.  Here xL ranges over 
all left options, and similarly for the others.

• This defines the multiplication of x any y in 
terms of other multiplications, each of which 
involves an option of x or y.  Our recursion will 
eventually reach a base case, and so is well-
defined.  We can (eventually) prove all the field 
axioms for this operation with addition.



Multiplying 2 by -1/2

• If y = 0, xy is also 0 = {|} because none of the 
left or right options exist.

• If y = 1 = {0|}, xy = {xLy, xRy} = {xL, xR} = x.

• Let’s try multiplying x = 2 = {1|} by y = -1/2 = 
{0|-1}.  All entries with xR do not exist.

• We have {xLy+xyL-xLyL|xyR+xLy-xLyR} = 
{-1/2+0-(0)|-2+(-1/2)-(-1)} = {-1/2|-3/2} = -1.


