
COMPSCI 575/MATH 513  
Combinatorics and Graph Theory

Lecture #32: Progressively Finite Games
(Tucker Section 10.1)
David Mix Barrington
5 December 2016



Progressively Finite Games

• Games We Are and Aren’t Studying

• Examples: 1-4 Takeaway, Adding Coins

• Winning Strategies

• Winning and Losing Positions

• A Theorem on Winning Strategies

• The Grundy Function



How to Define a Game?

• In this last section of the course we look at 
one of the several branches of mathematics 
called game theory.

• Here we will look at games that have two 
players, are deterministic, discrete, zero-
sum, and have perfect information.

• Lots of interesting games, of course, fail to 
have one or more of these properties.



Game Trees

• In COMPSCI 250 we modeled 
games like this with game 
trees.

• Each node represents a 
position, and is labeled with 
the player to move, or with 
the payoff if it is a leaf.

• We actually need not 
alternate moves as we do 
here.
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Evaluating Game Trees

• In COMPSCI 250 we proved 
that every node in such a tree 
has a value, and each player 
has a strategy that in the 
worst case will achieve that 
value for them.

• The value of a White node is 
the max of its childrens’ 
values, and that of a Black 
node is the minimum.
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Adversary Search

• So by evaluating the entire game tree, we could 
play the game optimally.  Unfortunately, the tree 
is normally exponentially sized in the number of 
moves and it’s not feasible to do this.

• Actual programs to play games like Chess use 
an evaluation function on positions, then 
truncate the tree and play a game whose goal is 
to get the best possible position some number 
of moves from now.



Progressively Finite Games

• Tucker defines a class of games where the total 
number of positions is finite and there is a finite 
limit on the possible number of moves.

• His games are non-partisan, in that the available 
moves for either player are the same from any 
position.  Equivalently, “whose move it is” is part 
of the position.

• He represents his games by directed acyclic 
graphs where nodes are positions and edges are 
moves.  (A cycle could allow an infinite game.)



Adapting Chess to This Format

• Chess is perhaps the most familiar game that 
is deterministic, discrete, zero-sum, and has 
perfect information.  But there is no finite 
limit on the number of moves.  How can we 
fix this?

• Under the rules, either player may claim a 
draw by proving that the identical board 
position has occurred for a third time, or that 
fifty moves have passed since the last time a 
piece was captured or a pawn was moved.



Adapting Chess

• Suppose we make draws into wins for Black.  
Then Black wants to claim a draw whenever 
these situations occur, so we can make them 
automatic.

• But the “state” of the game has to include 
enough information about the history to 
enforce these rules.

• With these modifications, Chess has a finite 
game tree.  So there exists either a winning 
strategy for White or a drawing for Black.



Games in Complexity

• Suppose I have a directed acyclic graph G, a 
start node s, and a goal node t.

• We can play a game where White starts a 
series of alternating moves along edges, and 
wins if and only the path so defined reaches t.

• This alternating reachability problem is 
“complete for the class P” in the language of 
COMPSCI 501.



Games in Complexity

• As we’ll see later in this lecture, we can 
determine the winner (under optimal play) of 
such a game in polynomial time.

• Using the Cook-Levin construction from 501, 
we can convert any polynomial-time problem 
into an alternating reachability problem on a 
polynomial-size graph.

• But “polynomial” here is defined in terms of 
the number of possible positions, which is 
prohibitively big for most families of games.



Two Game Examples

• Let’s now look at Tucker’s examples of games.

• In the first, we start with a pile of stones, a legal 
move is to remove 1, 2, 3, or 4 stones, and the 
winner is the one takes the last stone.

• In the second, players add coins to a pile (1, 2, 
or five on a turn) until someone wins by 
making the total either n2 for n > 1 or > 40.

• Each game is represented by a directed acyclic 
graph, which I’ll sketch on the board.



Winning Strategies

• What do we mean by a winning strategy? A 
strategy is an assignment of a move to each 
position.  A strategy is winning if playing it 
against any opponent’s strategy leads to a win.

• We can ignore positions that are not reachable 
by the player in the course of a game in which 
the strategy is being used.

• The strategy is a finite object but could be 
huge.



Winning and Losing Positions

• In 1-4 Takeaway, 0 is a winning position 
because if you can move to 0, your opponent 
cannot move and she loses.

• This makes 1, 2, 3, and 4 losing positions 
because if you move to one of them your 
opponent will take all the stones and win.

• But 5 then turns out to be winning, and by 
induction you can show that 5k is winning 
and 5k+1, 5k+2, 5k+3, and 5k+4 are losing for 
all non-negative integers k.



Winning and Losing Positions
• In the second game, the rules define 4, 9, 16, 

25, 36, and 41 to be winning positions.

• So any position with a direct move to one of 
these (2, 3, 7, 8, 11, 14, 15, 20, 23, 24, 31, 34, 
35, 37, 38, 39, 40) is a losing position.  (4 
would be losing if it weren’t already winning).

• Now look at 6.  A player at 6 has no choice 
but to move to a losing position (7, 8, or 11). 
So moving to 6 wins the game and 6 is a 
winning position.  This makes 1 and 5 losing 
positions, so that 0 is a winning position.



Theorem on Winning Strategies

• Something similar happens in any game 
defined by a graph in this way.

• Theorem: In any PF game, there is a unique 
winning strategy for one player or the other, 
consisting of a “kernel” of winning positions, 
and we can compute this kernel.

• Formally, a kernel is a set of nodes K such 
that there are no edges from K to K, and 
every non-K node has an edge into K.



Theorem on Winning Strategies

• The strategy is always to move to a kernel 
node if you are at a non-kernel node.  If you 
are at a kernel node, you are doomed anyway 
under optimal play by your opponent, so it 
doesn’t matter what you do.

• If you keep moving to kernel nodes, your 
opponent must eventually have no move.

• So if the start node is in the kernel, Black has 
a winning strategy, and if it is not, White does.



Proof of the Theorem

• We use induction on the number of nodes.

• If there is one node, we make it the kernel.  

• Now if every n-node graph has a kernel, and 
we have an n+1 node graph G, we find a node 
x of in-degree 0 and find the kernel of G - {x} 
by the IH.  If x has an edge to a kernel node, 
we add it to the kernel of G, otherwise we 
do not.  We now have a legal kernel for G. 



Constructing a Kernel

• Given any directed acyclic graph, we can 
construct a kernel more directly than in this 
proof.

• Define Level 0 to be the nodes that are 
sinks,with out-degree 0.  These nodes are in 
the kernel.

• Level 1 is the nodes not in Level 0 whose 
successors are all in Level 0.  Similarly, Level n
+1 is the nodes not in any Level 0-n whose 
successors are all in Levels 0-n.



Constructing a Kernel

• So the level of a node is the length of its longest 
path to a sink.

• Level 0 nodes are all winning (in the kernel) and 
Level 1 nodes are all losing (not in it).

• A Level 2 node is losing if it has an edge to a 
Level 0 node, and winning otherwise.

• In general a Level n+1 node is losing if it has an 
edge to a winning node in Levels 0-n, and winning 
otherwise.  In this way we label all the nodes.



Extending the Theorem

• The theorem holds for infinite games as well, as 
long as they are guaranteed to end.

• For example, 1consider 1-4 Takeaway where 
White’s first move is to name any integer as the 
initial pile size.  The game always ends but there 
is no limit on the length, and there are infinitely 
many states.

• As long as no state has an infinite path out of it, 
we can define level and complete the proof, 
though the computation may no longer be finite.



The Grundy Function

• The Grundy function on a directed graph (with 
no infinite paths) assigns a non-negative integer 
g(x) to every node x.

• If x is a sink, g(x) is 0.  Otherwise g(x) is the 
smallest number that is not equal to g(y) for any 
y that is a successor of x.

• We can define this by induction on levels, and it 
is well-defined if every node has a finite level.

• The unique kernel is just {x: f(x) = 0}.


