
COMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #32: Progressively Finite Games
(Tucker Section 10.1)
David Mix Barrington
5 December 2016

Progressively Finite Games

• Games We Are and Aren’t Studying

• Examples: 1-4 Takeaway, Adding Coins

• Winning Strategies

• Winning and Losing Positions

• A Theorem on Winning Strategies

• The Grundy Function

How to Define a Game?

• In this last section of the course we look at
one of the several branches of mathematics
called game theory.

• Here we will look at games that have two
players, are deterministic, discrete, zero-
sum, and have perfect information.

• Lots of interesting games, of course, fail to
have one or more of these properties.

Game Trees

• In COMPSCI 250 we modeled
games like this with game
trees.

• Each node represents a
position, and is labeled with
the player to move, or with
the payoff if it is a leaf.

• We actually need not
alternate moves as we do
here.

-1 -27 -71 -1-2-7

Evaluating Game Trees

• In COMPSCI 250 we proved
that every node in such a tree
has a value, and each player
has a strategy that in the
worst case will achieve that
value for them.

• The value of a White node is
the max of its childrens’
values, and that of a Black
node is the minimum.

-1 -27 -71 -1-2-7

-1

-1

7

-2

-1-1-2

Adversary Search

• So by evaluating the entire game tree, we could
play the game optimally. Unfortunately, the tree
is normally exponentially sized in the number of
moves and it’s not feasible to do this.

• Actual programs to play games like Chess use
an evaluation function on positions, then
truncate the tree and play a game whose goal is
to get the best possible position some number
of moves from now.

Progressively Finite Games

• Tucker defines a class of games where the total
number of positions is finite and there is a finite
limit on the possible number of moves.

• His games are non-partisan, in that the available
moves for either player are the same from any
position. Equivalently, “whose move it is” is part
of the position.

• He represents his games by directed acyclic
graphs where nodes are positions and edges are
moves. (A cycle could allow an infinite game.)

Adapting Chess to This Format

• Chess is perhaps the most familiar game that
is deterministic, discrete, zero-sum, and has
perfect information. But there is no finite
limit on the number of moves. How can we
fix this?

• Under the rules, either player may claim a
draw by proving that the identical board
position has occurred for a third time, or that
fifty moves have passed since the last time a
piece was captured or a pawn was moved.

Adapting Chess

• Suppose we make draws into wins for Black.
Then Black wants to claim a draw whenever
these situations occur, so we can make them
automatic.

• But the “state” of the game has to include
enough information about the history to
enforce these rules.

• With these modifications, Chess has a finite
game tree. So there exists either a winning
strategy for White or a drawing for Black.

Games in Complexity

• Suppose I have a directed acyclic graph G, a
start node s, and a goal node t.

• We can play a game where White starts a
series of alternating moves along edges, and
wins if and only the path so defined reaches t.

• This alternating reachability problem is
“complete for the class P” in the language of
COMPSCI 501.

Games in Complexity

• As we’ll see later in this lecture, we can
determine the winner (under optimal play) of
such a game in polynomial time.

• Using the Cook-Levin construction from 501,
we can convert any polynomial-time problem
into an alternating reachability problem on a
polynomial-size graph.

• But “polynomial” here is defined in terms of
the number of possible positions, which is
prohibitively big for most families of games.

Two Game Examples

• Let’s now look at Tucker’s examples of games.

• In the first, we start with a pile of stones, a legal
move is to remove 1, 2, 3, or 4 stones, and the
winner is the one takes the last stone.

• In the second, players add coins to a pile (1, 2,
or five on a turn) until someone wins by
making the total either n2 for n > 1 or > 40.

• Each game is represented by a directed acyclic
graph, which I’ll sketch on the board.

Winning Strategies

• What do we mean by a winning strategy? A
strategy is an assignment of a move to each
position. A strategy is winning if playing it
against any opponent’s strategy leads to a win.

• We can ignore positions that are not reachable
by the player in the course of a game in which
the strategy is being used.

• The strategy is a finite object but could be
huge.

Winning and Losing Positions

• In 1-4 Takeaway, 0 is a winning position
because if you can move to 0, your opponent
cannot move and she loses.

• This makes 1, 2, 3, and 4 losing positions
because if you move to one of them your
opponent will take all the stones and win.

• But 5 then turns out to be winning, and by
induction you can show that 5k is winning
and 5k+1, 5k+2, 5k+3, and 5k+4 are losing for
all non-negative integers k.

Winning and Losing Positions
• In the second game, the rules define 4, 9, 16,

25, 36, and 41 to be winning positions.

• So any position with a direct move to one of
these (2, 3, 7, 8, 11, 14, 15, 20, 23, 24, 31, 34,
35, 37, 38, 39, 40) is a losing position. (4
would be losing if it weren’t already winning).

• Now look at 6. A player at 6 has no choice
but to move to a losing position (7, 8, or 11).
So moving to 6 wins the game and 6 is a
winning position. This makes 1 and 5 losing
positions, so that 0 is a winning position.

Theorem on Winning Strategies

• Something similar happens in any game
defined by a graph in this way.

• Theorem: In any PF game, there is a unique
winning strategy for one player or the other,
consisting of a “kernel” of winning positions,
and we can compute this kernel.

• Formally, a kernel is a set of nodes K such
that there are no edges from K to K, and
every non-K node has an edge into K.

Theorem on Winning Strategies

• The strategy is always to move to a kernel
node if you are at a non-kernel node. If you
are at a kernel node, you are doomed anyway
under optimal play by your opponent, so it
doesn’t matter what you do.

• If you keep moving to kernel nodes, your
opponent must eventually have no move.

• So if the start node is in the kernel, Black has
a winning strategy, and if it is not, White does.

Proof of the Theorem

• We use induction on the number of nodes.

• If there is one node, we make it the kernel.

• Now if every n-node graph has a kernel, and
we have an n+1 node graph G, we find a node
x of in-degree 0 and find the kernel of G - {x}
by the IH. If x has an edge to a kernel node,
we add it to the kernel of G, otherwise we
do not. We now have a legal kernel for G.

Constructing a Kernel

• Given any directed acyclic graph, we can
construct a kernel more directly than in this
proof.

• Define Level 0 to be the nodes that are
sinks,with out-degree 0. These nodes are in
the kernel.

• Level 1 is the nodes not in Level 0 whose
successors are all in Level 0. Similarly, Level n
+1 is the nodes not in any Level 0-n whose
successors are all in Levels 0-n.

Constructing a Kernel

• So the level of a node is the length of its longest
path to a sink.

• Level 0 nodes are all winning (in the kernel) and
Level 1 nodes are all losing (not in it).

• A Level 2 node is losing if it has an edge to a
Level 0 node, and winning otherwise.

• In general a Level n+1 node is losing if it has an
edge to a winning node in Levels 0-n, and winning
otherwise. In this way we label all the nodes.

Extending the Theorem

• The theorem holds for infinite games as well, as
long as they are guaranteed to end.

• For example, 1consider 1-4 Takeaway where
White’s first move is to name any integer as the
initial pile size. The game always ends but there
is no limit on the length, and there are infinitely
many states.

• As long as no state has an infinite path out of it,
we can define level and complete the proof,
though the computation may no longer be finite.

The Grundy Function

• The Grundy function on a directed graph (with
no infinite paths) assigns a non-negative integer
g(x) to every node x.

• If x is a sink, g(x) is 0. Otherwise g(x) is the
smallest number that is not equal to g(y) for any
y that is a successor of x.

• We can define this by induction on levels, and it
is well-defined if every node has a finite level.

• The unique kernel is just {x: f(x) = 0}.

