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Pattern Inventories

• We’ll finish our study of groups and 
symmetries by looking at pattern 
inventories for colorings.

• We’ve learned how to count equivalence 
classes of colorings defined by a group of 
symmetries.

• But the set of all colorings is already divided 
into subsets, based on the number of 
occurrences of each color.



Pattern Inventories

• With 2-colorings of the four vertices of a 
square, we could have 0, 1, 2, 3, or 4 white 
vertices, and no symmetry can alter that 
number.  So there are at least five equivalence 
classes, and we saw already that there are 6.

• A more complete description than “six classes” 
is “one class with 0 whites, one with 1, two 
with 2, one with 3, and one with 4”.

• We can write this is as the polynomial b4 + b3w 
+ 2b2w2 + bw3 + w4, the pattern inventory.



Two-Colored Squares Again

• Let’s see how we can calculate this pattern 
inventory in the case of 2-colored squares.

• The identity fixes all the colorings, and we can 
inventory all the colorings by the polynomial 
b4 + 4b3w + 6b2w2 + 4bw3 + w4.  Note that 
this equals (b+w)4.

• The two rotations fix only the mono-colored 
colorings, which have inventory b4 + w4.



Two-Colored Squares Again

• The three double-flips each fix four colorings, 
inventoried by b4 + 2b2w2 + w4 = (b2+w2)2.

• The two single flips each fix eight colorings, 
inventoried by b4 + 2b3w + 2b2w2 + 2bw3 + w4 

= (b+w)2(b2+w2).

• Adding the eight inventories (one for each 
permutation in the group) gives us the 
inventory 8b4 + 8b3w + 16b2w2 + 8bw3 + 8w4. 
Dividing this by 8 gives us the overall pattern 
inventory.



What’s Going On?

• We know that when we add up the elements 
fixed by each permutation, we get |G| copies 
from each equivalence class.  This is why the 
cycle index polynomial, evaluated with r for 
each variable, gives us the number of classes.

• What’s happening now is that we are replacing 
each of those r’s by b’s and w’s, so that each 
monomial in the eventual sum becomes a 
monomial in b’s and w’s, marking the number of 
uses of each color in that coloring.



What’s Going On?

• The identity permutation, for example, has 
four 1-cycles and fixes all 24 colorings.  The 
polynomial (b+w)4 has one monomial for 
each of these colorings.

• A double-flip, by contrast, has two 2-cycles, 
and a color is assigned to each 2-cycle in a 
coloring fixed by it.  Since each cycle has two 
blacks or two whites, the polynomial (b2+w2)2 

inventories those fixed colorings.



Polya’s Formula

• Recall that the cycle index polynomial PG for 
a group G is 1/|G| times the sum, for each 
element π of G, of a monomial giving the 
cycle structure of π.

• Polya’s theorem says that if we substitute b
+w for x1, b2+w2 for x2, and similarly bk+wk 
for each xk, and evaluate PG with those values, 
we get the pattern inventory for 2-colorings.

• With more than two colors we use the sum 
of the kth powers of a variable for each color.



Rotations of a Triangle

• Let’s look at this with G as ℤ3 and S as a 
triangle, so that G is the group of rotations.

• The cycle index polynomial is (x13+2x3)/3, and 
substituting we get a pattern inventory of    
((b+w)3+2(b3+w3))/3 = b3+b2w+bw2+w3.  This 
represents the four classes of 2-colorings.

• With three colors we get ((b+w
+r)3+2(b3+w3+r3))/3 = b3+w3+r3+b2w+b2r
+w2b+w2r+r2b+r2w+2bwr.  The number of 
colors determines the class except for bwr.



Rotations of a Heptagon

• With a 7-gon the cycle index polynomial for 
rotations is (x17+6x7)/7, so Polya’s formula for 
2-colorings gives us ((b+w)7+6(b7+w7))/7.

• The series of coefficients for (b+w)7 is a line of 
Pascal’s Triangle, (1 7 21 35 35 21 7 1).  The 
other term has coefficients (6 0 0 0 0 0 0 6), 
so the sum is (7 7 21 35 35 21 7 7).  Dividing 
by 7 and reverting to polynomial notation gives 
b7+b6w+3b5w2+5b4w3+5b3w4+3b2w5+bw6+w7.  
There are 20 total classes and we have the 
pattern inventory.



Edges of a Tetrahedron

• The group A4 of symmetries of a tetrahedron also 
acts on the six edges of the tetrahedron. The cycle 
index polynomial for that action is 
(x16+8x32+3x12x22)/12, as we can see by analyzing 
the eight 120-degree rotations about a point and 
the three double-flips.

• Substituting (bk+wk) for xk gives us the sum of three 
polynomials with coefficients (1 6 15 20 15 6 1), (8 
0 0 16 0 0 8), and (3 6 9 12 9 6 3). The sum is (12 
12 24 48 24 12 12) and the pattern inventory is 
b6+b5w+2b4w2+4b3w3+2b2w4+bw5+w6.



Vertices of a Cube
• One more example is the symmetries of a cube.  

There are 24, because we could have any of the 
six sides on the bottom in any of four 
orientations.  The group is isomorphic to S4, but 
is acting on the eight vertices.

• The cycle index polynomial takes some work to 
compute: (x18+6x42+9x24+8x12x32)/24.

• We add (1 8 28 56 70 56 28 8 1), (6 0 0 0 12 0 0 
0 6), (9 0 36 0 54 0 36 0 9), and (8 16 8 16 16 32 
16 8 16 8), divide by 24, and get b8+b7w
+3b2w6+3b3w5+7b4w4+3b3w5+3b2w6+bw7+w8.



Undirected Graphs

• Consider the set of possible edges in an n-
vertex undirected graph.  A permutation of 
the vertices also permutes the edges.  So we 
can think of the group Sn as acting on the 
edges, with a cycle index polynomial.

• A particular undirected graph can be thought 
of as a two-coloring of the edges, with one 
color for “edge” and one for “non-edge”.  
(This is the basis of Exercise 9.4.16 on 
HW#7.)



Undirected Graphs

• Two n-vertex graphs are isomorphic if there 
is a permutation of the vertices that takes 
one to the other.  Thus the number of graphs, 
up to isomorphism, is the number of 2-
colorings of the edge set, up to the action of 
Sn on that edge set, and can be computed by 
the methods we’ve used here.

• Polya’s Formula can give us a pattern 
inventory of these “colorings”, which is an 
inventory of the graphs by number of edges.



Undirected Graphs

• In 2007 I wanted a list of all the graphs of 
various small sizes, up to isomorphism.  I also 
wanted a list of “two-colored graphs”, which 
correspond to 3-colorings of the edge set with 
“no edge”, “red edge”, and “blue edge”.

• I wrote a computer program to generate these 
lists, and the results are on my web site. I just 
made a backtrack search through the 
possibilities, rejecting any graph that was 
isomorphic to a lexicographically smaller graph.



Undirected Graphs

• Once you have solved Exercise 9.4.16, you 
will know how to use Polya’s Formula to get 
pattern inventories for each of these lists of 
graphs.  

• Of course to construct the inventories you 
would need the cycle index polynomial of the 
action of Sn on the edges, for each n.

• For S3 the action on the three edges is the 
same as that on the three vertices.  But for S4 

things already get more interesting.


