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The Cycle Index

• Review Burnside’s Theorem

• Colorings of Squares Again

• Cycles and the Number Fixed

• The Cycle Index Polynomial

• The Cycle Index Theorem

• Colorings of an n-Gon

• Colorings of a Tetrahedron



Burnside’s Theorem

• We’ve just proved two versions of a theorem 
relating the number N of equivalence classes 
of colorings to the number of colorings fixed 
by elements of a symmetry group G.

• N is 1/|G| times the number of pairs (x, π) 
where π is a permutation in G that fixes x.

• We can count this number as the sum of 
φ(x) for all x or as the sum of Ψ(π) for all π.



Colorings of Squares Again

• Let’s try to apply this theorem to count the 
number of r-colorings of a square under the 
action of the dihedral group of rotations and 
reflections.

• We have eight permutations.  What do they 
do with r=2?  The identity fixes all 16.  The 
two 90 degree rotations fix only two.  Three 
fix four, and two fix eight!

• Note that Tucker’s Figure 9.7 has typos.



Cycles and the Number Fixed

• Call the corners of the square a, b, c, and d in 
cyclic order.  In cycle notation, we can write 
the eight elements of G as 1, (abcd), (ac)(bd), 
(adcb), (ab)(cd), (ad)(bc), (ac), and (bd).

• To be fixed by a particular permutation, a 
coloring must have the same color for every 
vertex in a cycle of that permutation.

• Thus 1 (the product of four 1-cycles) fixes 
any coloring, but (abcd) fixes only r of them.



The Cycle Index Polynomial

• What this means is that the fixed-point 
behavior of a permutation depends only on 
its cycle structure, which is the number of 
cycles of each size. 

• We can represent the cycle structure of a 
group as a polynomial, with variables x1,…,x|S| 
and each variable xi appearing to a power 
equal to the number of i-cycles in a particular 
permutation.  We include cycles of length 1.



Cycle Index Examples

• We have a monomial for each element of the 
group, and we divide the sum of these by |G|.

• The 1-element group ℤ1 has cycle index x1.

• The 2-element group ℤ2 has cycle index 
(x12+x2)/2, as one permutation has two 1-
cycles and the other one 2-cycle.

• The 3-element group ℤ3 has cycle index 
(x13+2x3)/3, for the identity with three 1-cycles 
and the two others each with one 3-cycle.



Cycle Index Examples

• There are two groups with four elements, ℤ4 
with cycle index (x14+x22+2x4)/4, and ℤ2×ℤ2 
with cycle index (x14+3x22)/4.

• The only group with five elements is ℤ5, with 
cycle index (x15+4x5)/5.  In general for prime 
p,  ℤp is the only group with p elements and 
has cycle index (x1p+(p-1)xp)/p.

• The two groups with six elements are ℤ6 
with index (x16+x23+2x32+2x6)/6 and S3 with 
cycle index (x13+3x1x2+2x3)/6.



Groups of Permutations

• In algebra we consider two groups to be the 
same if they are isomorphic, meaning that 
there is a group homomorphism from one 
to the other that is a bijection.  A group 
homomorphism is a map f such that f(xy) 
always equals f(x)f(y).

• But the cycle index is not preserved by group 
isomorphism, as it depends on how the group 
acts as a group of permutations of some finite 
set.



Groups of Permutations

• S3 is the group of all permutations of a three-
element set: {1, (ab), (ac), (bc), (abc), (acb)}.

• But any group can be represented as a group 
of permutations of itself, by having y take each 
x to xy.  If we call the elements of S3 
{a,b,c,d,e,f}, the six permutations can be 
written 1, (ab)(cf)(de), (ac)(be)(df), (ad)(bf)(ce), 
(aef)(bcd), and (afe)(bdc).

• Here the cycle index is (x16+3x23+2x32)/6.



The Cycle Index Theorem

• We observed earlier that a permutation with 
k disjoint cycles fixes any coloring that has a 
common color for each cycle, so it fixes 
exactly rk colorings.

• If we substitute the value r for each of the 
variables x1,…,xn, each monomial 
representing a permutation with k cycles 
contributes rk to the sum.  Thus this value of 
the cycle index polynomial is exactly (1/|G|) 
times the sum over all π of Ψ(π), which by 
Burnside’s Theorem is exactly N.



The Cycle Index Theorem

• Thus for any set S, and for any group G of 
permutations of S with cycle index 
polynomial PG(x1,…,xn), we have that the 
number of nonequivalent m-colorings of S is 
given by PG(m,…,m).

• For the dihedral group on the square, we had 
PG(x1,x2,x3,x4) = (x14+2x12x2+3x22+2x4)/8.  
This gives us PG(2,2,2,2) = (16+16+12+4)/
8=6, PG(3,3,3,3) = (81+54+27+6)/8 = 21, and 
PG(4,4,4,4) = (256+128+48+8)/8 = 55.



Batons Revisited

• Recall our example of k-banded batons, with a 
two-element G consisting of the identity and a 
flip. The cycle index polynomial for even k is 
(x1k+x2k/2)/2, and for odd k is (x1k+x1x2(k-1)/2)/2.

• To get the number of r-colorings, we simply 
substitute r for x1 and x2 to get (rk+rk/2)/2 in 
the case of even k and (rk+r(k+1)/2)/2 in the case 
of odd k.



Colorings of an n-Gon

• A one-sided n-gon has ℤn as its group of 
symmetries, as reflections are not permitted.

• For prime n, PG(x1,…,xn) = (x1n+(n-1)xn)/n, 
and thus the number of r-colorings is (rn+
(n-1)r)/n.

• For composite n things are more 
complicated.  For n=8, for example, PG(x1,
…,xn) = (x18+x24+2x42+4x8)/8, and thus N = 
PG(r,…,r) = (r8+r4+2r2+4r)/8, which when 
r=2 is (256+16+8+8)/8 = 36.



Coloring a Tetrahedron

• We observed earlier that a regular 
tetrahedron has twelve symmetries, as any of 
the four faces may be on the bottom in any of 
three orientations.

• The group {1, (abc), (acb), (abd), (adb), (acd), 
(adc), (bcd), (bdc), (ab)(cd), (ac)(bd), (ad)(bc)} is 
called A4 because it consists of all the even 
permutations of {a,b,c,d}.  (Even means the 
product of an even number of transpositions: 
we would need to prove this well-defined.)



Coloring a Tetrahedron

• By inspection, the cycle index of A4 is 
(x14+8x1x3+3x22)/12.

• This means that the number of 2-colorings of a 
tetrahedron up to symmetry is 
(24+8(22)+3(22))/12 = (16+32+12)/12 = 5.  This 
works because any two colorings with the 
same number of white nodes are the same.

• For 3-colorings we have (81+8(9)+3(9))/12 = 
15.  Again the number of nodes of each color 
suffices to determine the equivalence class.



The Group Sn

• We defined Sn to be the group of all 
permutations of n objects, with n! elements.

• Under Sn, two r-colorings are equivalent if 
and only if they have the same number of 
objects of each color, so we know there are 
C(n+r-1, r-1) = C(n+r-1, n) equivalence 
classes. 

• Evaluating the cycle index (x13+3x1x2+2x3)/6 
at (r,r,r) gives us (r3+3r2+2r)/6 which is 
exactly C(3+r-1, 3).



The Groups S4 and S5

• To get the cycle index of S4, we need to 
classify all the permutations by cycle structure: 
(x14+6x12x2+3x2x2+8x1x3+6x4)/24.

• The r-colorings of a set thus number 
(r4+6r3+11r2+6r)/24, and this number is just 
C(r+3, 4).

• The possible cycle structures in S5 may be 
familiar as poker hands.  The cycle index is 
(x15+10x14x2+15x1x22+20x12x3+20x2x3+30x1x4

+24x5)/120.


