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Burnside’s Theorem

® We've just proved two versions of a theorem
relating the number N of equivalence classes
of colorings to the number of colorings fixed
by elements of a symmetry group G.

® N is |/|G| times the number of pairs (x, TT)
where TT is a permutation in G that fixes x.

® VVe can count this number as the sum of
P(x) for all x or as the sum of ¥Y(17) for all TT.



Colorings of Squares Again

® |et’s try to apply this theorem to count the
number of r-colorings of a square under the
action of the dihedral group of rotations and

reflections.

® We have eight permutations. VWhat do they
do with r=2? The identity fixes all 16. The
two 90 degree rotations fix only two. Three
fix four, and two fix eight!

® Note that Tucker’s Figure 9.7 has typos.



Cycles and the Number Fixed

® (Call the corners of the square a, b, c,and d in
cyclic order. In cycle notation, we can write

the eight elements of G as |, (abcd), (ac)(bd),
(adcb), (ab)(cd), (ad)(bc), (ac), and (bd).

® TJo be fixed by a particular permutation, a
coloring must have the same color for every
vertex in a cycle of that permutation.

® Thus | (the product of four |-cycles) fixes
any coloring, but (abcd) fixes only r of them.



The Cycle Index Polynomial

® What this means is that the fixed-point
behavior of a permutation depends only on
its cycle structure, which is the number of
cycles of each size.

® VWe can represent the cycle structure of a
group as a polynomial, with variables xi,...,Xx|s)
and each variable x; appearing to a power
equal to the number of i-cycles in a particular
permutation. Ve include cycles of length |.



Cycle Index Examples

® VVe have a monomial for each element of the
group, and we divide the sum of these by |G]|.

® The |-element group 7| has cycle index x.

® The 2-element group 7, has cycle index
(X12+x2)/2, as one permutation has two |-
cycles and the other one 2-cycle.

® The 3-element group 73 has cycle index
(x13+2x3)/3, for the identity with three |-cycles
and the two others each with one 3-cycle.



Cycle Index Examples

® There are two groups with four elements, 74
with cycle index (xi*+x22+2x4)/4, and 7% 7,
with cycle index (x1*+3x22)/4.

® The only group with five elements is Zs, with
cycle index (x1°+4xs)/5. In general for prime
P, Zp is the only group with p elements and
has cycle index (xiP+(p-1)xp)/p.

® The two groups with six elements are Zs
with index (x+x23+2x32+2x¢)/6 and S3 with
cycle index (xi3+3xix2+2x3)/6.



Groups of Permutations

® |n algebra we consider two groups to be the
same if they are isomorphic, meaning that
there is a group homomorphism from one
to the other that is a bijection. A group
homomorphism is a map f such that f(xy)
always equals f(x)f(y).

® But the cycle index is not preserved by group
isomorphism, as it depends on how the group
acts as a group of permutations of some finite
set.



Groups of Permutations

® S3is the group of all permutations of a three-
element set: {l, (ab), (ac), (bc), (abc), (acb)}.

® But any group can be represented as a group
of permutations of itself, by having y take each
x to xy. If we call the elements of S3
{a,b,c,d,e,f}, the six permutations can be
written |, (ab)(cf)(de), (ac)(be)(df), (ad)(bf)(ce),
(aef)(bcd), and (afe)(bdc).

® Here the cycle index is (x1°+3x23+2x3%)/6.



The Cycle Index Theorem

® We observed earlier that a permutation with
k disjoint cycles fixes any coloring that has a
common color for each cycle, so it fixes
exactly rk colorings.

® |f we substitute the value r for each of the
variables xi,...,xn, @ach monomial
representing a permutation with k cycles
contributes r* to the sum. Thus this value of
the cycle index polynomial is exactly (1/|G|)
times the sum over all 1T of Y (1T), which by
Burnside’s Theorem is exactly N.



The Cycle Index Theorem

® Thus for any set S, and for any group G of
permutations of S with cycle index
polynomial Pg(xi,...,Xn), we have that the
number of nonequivalent m-colorings of S is
given by Pg(m,...,m).

® For the dihedral group on the square, we had
Pa(X1,X2,X3,%4) = (x1*+2x12x2+3x22+2x4)/8.
This gives us Pc(2,2,2,2) = (16+16+12+4)/
8=6, Pc(3,3,3,3) = (81+54+27+6)/8 = 21, and
Pc(4,4,4,4) = (256+128+48+8)/8 = 55.



Batons Revisited

® Recall our example of k-banded batons, with a
two-element G consisting of the identity and a

flip. The cycle index polynomial for even k is
(X1%+x2%)/2, and for odd k is (xi*+xx2(¢1/2)/2,

® Jo get the number of r-colorings, we simply
substitute r for x| and x; to get (r*+rk?)/2 in

the case of even k and (r*+r&*1)2)/2 in the case
of odd k.



Colorings of an n-Gon

® A one-sided n-gon has 7, as its group of
symmetries, as reflections are not permitted.

® For prime n, Pg(xi,...,xn) = (X1"+(n-1)xn)/n,
and thus the number of r-colorings is (r"+
(n-1)r)/n.

® For composite n things are more
complicated. For n=8, for example, Pc(xI,
. oXn) = (X18+x2M+2x4%+4x35)/8, and thus N =
Pa(r,...,r) = (r3+r*+2r2+4r)/8, which when
r=2is (256+16+8+8)/8 = 36.



Coloring a Tetrahedron

® We observed earlier that a regular
tetrahedron has twelve symmetries, as any of

the four faces may be on the bottom in any of
three orientations.

® The group {I, (abc), (acb), (abd), (adb), (acd),
(adc), (bcd), (bdc), (ab)(cd), (ac)(bd), (ad)(bc)} is
called A4 because it consists of all the even
permutations of {a,b,c,d}. (Even means the
product of an even number of transpositions:
we would need to prove this well-defined.)



Coloring a Tetrahedron

By inspection, the cycle index of A4 is
(x1*+8x1x3+3x22)/1 2.

This means that the number of 2-colorings of a
tetrahedron up to symmetry is
(24+8(22)+3(2%))/12 = (16+32+12)/12 = 5. This
works because any two colorings with the
same number of white nodes are the same.

For 3-colorings we have (81+8(9)+3(9))/12 =
|5. Again the number of nodes of each color
suffices to determine the equivalence class.



The Group S,

® Ve defined Sy to be the group of all
permutations of n objects, with n! elements.

® Under S, two r-colorings are equivalent if
and only if they have the same number of
objects of each color, so we know there are
C(n+r-I, r-1) = C(n+r-1, n) equivalence
classes.

® Evaluating the cycle index (xi3+3xx2+2x3)/6
at (r,,r) gives us (r>+3r2+2r)/6 which is
exactly C(3+r-1, 3).



The Groups S4 and Ss

To get the cycle index of S4, we need to
classify all the permutations by cycle structure:
(X1#+6x12x2+ 3x2x2+8x%1x3+6X4)/24.

The r-colorings of a set thus number
(r*+6r3+1 1 r2+6r)/24, and this number is just
C(r+3,4).

The possible cycle structures in S5 may be
familiar as poker hands. The cycle index is
(X1°+ 1 0x*x2+ | 5x1%22+20x2x3+20x2x3+30x 1 X4
+24xs)/120.



