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Equivalence, Symmetry Groups

• Colorings of a Square

• Equivalence Relations on Colorings

• Symmetries of Regular Polygons

• Permutations and Cycle Notation

• Groups of Permutations

• Partitions Induced By a Group



Symmetries and Games

• In this last part of the course, we’ll be looking 
at two new kinds of combinatorial problems.

• Chapter 9 of Tucker deals with symmetries. 
How do we count objects when the same 
object may have multiple presentations?

• Chapter 10, and some additional material I’ll 
provide, deals with the combinatorial game 
theory developed by Conway.



Colorings of a Square

• Suppose I color the vertices of a square.  If I 
assign one of r colors to each vertex, there 
are r4 ways to do this.

• But if I rotate the square, or flip it over, I can 
turn one of these colorings into another.  If I 
consider two colorings to be “the same” if 
this is possible, then my new number of 
colorings is less than r4 and more difficult 
(and interesting) to calculate.



Colorings of a Square

• Let’s look at the 16 2-colorings of a square.

• I’ll denote a coloring by giving the colors of 
the vertices, clockwise from the top left.  So 
they range from WWWW to BBBB.

• As I rotate or reflect, one thing that I cannot 
change is the number of white and black 
vertices.  There is one coloring with four 
whites, four with three, six with two, four 
with one, and one with none.



Colorings of a Square

• The four colorings with three whites may be 
mapped to one another by a rotation, as can 
the four colorings with one white.

• But no rotation can change WWBB to 
WBWB, so there are two kinds of colorings 
with two whites.  Every coloring with two 
whites can be rotated to one of these.

• The number of colorings “up to symmetry” is 
thus 1+1+2+1+1 = 6.



Equivalence Relations

• We know from COMPSCI 250 that a binary 
relation that is reflexive, symmetric, and 
transitive, called an equivalence relation, 
divides its base set into equivalence classes.

• If x is any element of A, its equivalence class 
[x] is the set {y: (x, y) ∈ R}.  The equivalence 
classes form a partition of A, and the “same-
set” relation of any partition is an equivalence 
relation.



Symmetries of Regular Polygons

• A symmetry of a geometrical figure is a map 
from the figure to itself.

• In the case of a polygon, we can view a 
symmetry as a function from the vertices to 
the vertices, where f(v) is the vertex to which 
we move vertex v.

• A regular polygon with n sides (an n-gon) has 
2n possible symmetries.  We can rotate it by 
any multiple of 360/n degrees, or flip it over.



Symmetries of a Tetrahedron

• A regular tetrahedron can be placed 
in twelve possible ways.  We can 
decide which of the four faces will 
go on the bottom, and then which 
of the three orientations that 
bottom face (a regular triangle) will 
be in.

• Any of these orientations may be 
moved to any other by a rotation in 
three dimensions.



Symmetries of a Tetrahedron

• Any of these symmetries can be 
thought of as a function (a bijection) 
from the set of vertices to itself.

• Rotating the bottom clockwise 
(looking down) would take A to C, 
C to B, B to A, and leave D fixed.

• Rotating in a different plane could 
take A to C, B to D, C to A, and D 
to B.



Permutations

• Each of the twelve symmetries corresponds 
to a bijection from the set {A, B, C, D} to 
itself, called a permutation of the set.

• If we represent a bijection f by the string 
f(A)f(B)f(C)f(D), then these twelve turn out 
to be ABCD, ACDB, ADBC, BADC, BCAD, 
BDCA, CADB, CBAD, CDBA, DACB, DBAC, 
and DCBA.

• This is half of the 4! = 24 possible bijections.



Cycle Notation for Permutations

• This is called the pointwise notation for 
permutations.  There is another notation.

• Consider permutation BDAC.  If I apply this 
permutation to A I get B.  If I apply it again to 
B I get D, and applying it more gets me C, and 
then A again.  We call this sequence A-B-D-C-
A a cycle.  Any permutation takes any 
element through a cycle, and these cycles 
form a partition of the base set.



Cycle Notation for Permutations

• The cycle notation for a permutation lists 
the cycles, with the elements of each cycle in 
their cyclic order.  So this permutation that 
was called BDAC in pointwise notation is 
now called (ABDC) in cycle notation.  The 
point wise permutation CDAB is called (AC)
(BD).

• By convention, we start each cycle with its 
smallest member, and order the cycles in 
descending order of smallest member.



Composing Permutations

• If f and g are two permutations of the same 
set X, there is a new permutation h that we 
obtain by first performing f, then performing 
g.  (Of course the composition of two 
bijections is a bijection.)  We call this the 
product of f and g and write it “fg”.

• It is fairly easy to multiply permutations when 
they are given in cycle notation.



Composing Permutations

• Let f be (AC)(BD) and g be (ABDC).  The 
product of f and g can be written (AC)(BD)
(ABDC), as a product of permutations that 
are each a single cycle.  (We generally leave 
out cycles of size 1, so (C)(ADB) would be 
written just (ADB).

• We’d like to write (AC)(BD)(ABDC) as a 
product of disjoint cycles, a normal form for 
cycle notation.  How do we do this?



Composing Permutations

• Looking at (AC)(BD)(ABDC), where does A 
go?  The first cycle takes it to C, the second 
leaves it as C, and the third takes it back to A. 
So the product fixes A.

• B is fixed by the first, goes to D by the 
second, and to C by the third.  C goes to A by 
the first, is fixed by the second, and goes to B 
by the third.  So the product has the cycle 
(BC).  And we can confirm that the product 
also fixes D, so the product is just (BC).



Groups of Permutations

• A group is a set of objects G with a binary 
operation (G × G) → G, usually called a 
product, that is associative, has an identity 
element, and has an inverse for every 
element.

• Any nonempty set of permutations of a finite 
set that is closed under composition must 
form a group, with composition as the 
operation. 

• Let’s prove this claim.



Groups of Permutations

• Let G be any nonempty closed set of 
permutations of a finite set and let f be any 
permutation in G.

• If we look at f, f2, f3,…, where fk is the 
composition of k copies of f, we must eventually 
have fi = fj for some i and j with i ≠ j, since the set 
is finite and has only finitely many permutations.

• But then fj-i is the identity permutation and is in G.  
And f(fj-i-1) = fj-i = the identity, so fj-i-1 is the inverse 
of f and is in G.



Partitions Induced by a Group

• Now consider colorings of a set of vertices, 
and some group G of permutations of the 
vertices.  (For example, G might be the set of 
12 symmetries of the tetrahedron, viewed as 
permutations of the vertices.)

• The group has an action on the colorings, 
because permuting the vertices leads to a 
new coloring.  (Or, in some cases, to the same 
coloring.)



Partitions Induced by a Group

• Given a group G, we can define an 
equivalence relation on the colorings, where 
R(c1, c2) is true if there exists some f in G 
that takes c1 to c2.

• If G is the group of symmetries we defined 
earlier, this equivalence relation is the 
property of being “the same coloring” we 
discussed at the start of this lecture.

• It partitions the colorings into classes.



Partitions Induced by a Group

• So under the group of eight symmetries of 
the square, the 16 2-colorings of the square 
are partitioned into six equivalence classes.

• What about the 81 3-colorings of the square, 
under the same group?  All the elements of a 
class must have the same multiset of vertex 
colors, but not all colorings with the same 
multiset will be equivalent.  We’ll look at how 
to count the classes after the break.


