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• Number in Exactly or At Most m Sets



Counting With Venn Diagrams

• The single most fundamental rule for 
counting is the Sum Rule: if A and B are 
disjoint sets, |A∪B| = |A| + |B|.

• Just after that is the Sum Rule With Overlap,  
|A∪B| = |A| + |B| - |A∩B|.  We count both 
sets, and remove the double-counted items.

• We can expand this to more than two sets.



Counting With Venn Diagrams 
• If I tell you that my total set is 

made up of 615 females, 345 
young people, and 482 singles, 
that is not enough to compute 
its size.

• If in addition I say that there are 
190 young females, 187 young 
singles, 295 single females, and 
120 young single females, you 
can complete this diagram and 
compute the total of 890.



Restricted Arrangments

• Let’s apply this to a counting problem.  How 
many permutations of {0,…,9} have first digit 
greater than 1 and last digit less than 8?

• It’s all of them (10!) minus those starting with 
0 or 1 (2⋅9!), minus those ending with 8 or 9 
(2⋅9!) plus those that both start with 0 or 1 
and end with 8 or 9 (2⋅2⋅8!).  The elements 
of the last set were subtracted twice and so 
must be added back in once.



Relatively Prime Numbers
• The set ℤ70 of integers mod 70 has a subset 
ℤ70* of elements relatively prime to 70.  

• To count ℤ70*, we start with 70, subtract the 
evens (35), multiples of 5 (14), and multiples of 
7 (10), then add in the 7 multiples of 10, 5 
multiples of 14, and 2 multiples of 35, then 
subtract 0 which has so far been subtracted 
twice and added in twice.  The total of 70 - 
(35+14+10) + (7+5+2) -1 = (2-1)(5-1)(7-1) = 
24, as we could also find from the Chinese 
Remainder Theorem.



More Examples

• How many n-digit sequences over {0,1,2} 
have at least one 0, at least one 1, and at least 
one 2?  This isn’t hard, but let’s develop some 
useful notation.  Let A0,  A1, and A2 be the 
sequences without 0, 1, and 2 respectively.  

• The set we want to count is A0ʹ ∩ A1ʹ ∩ A2ʹ 
where ʹ means complement because I can’t 
do overlines.

• We compute it as 3n - 3(2n) + 3(1n) - 0.



More Examples

• If I have 100 students, 40 each are taking 
French, Latin, and German, and I am also given 
that 20 take only French, 20 only Latin, and 15 
only German.  10 take both French and Latin.

• Is this enough to compute everything?  We 
have eight possible combinations, represented 
in a three-set Venn diagram.

• We’ll do this on the board, getting the 
conclusion that 15 students take none.



The Inclusion-Exclusion Formula

• In general, when we have a set of N elements 
and subsets A1,…,An, we will now write 
N(A1ʹA2ʹ…Anʹ) to mean the number of 
elements not in any of the Ai’s, omitting the ∩ 
symbols.

• We let S1 = |A1| + … + |An|, S2 be the sum of 
sizes of all the intersections Ai∩Aj, S3 be the 
sum of sizes of all 3-set intersections, and so 
on through all Sk to Sn, the size of the 
intersection of all n sets.



The Inclusion-Exclusion Formula

• With this notation, we have a theorem that 
the number N(A1ʹ…Anʹ) of elements in none 
of the sets is N - S1 + S2 - S3 + … + (-1)nSn.

• To prove this, we look at an arbitrary element 
of the whole set and see how many times it is 
counted.  If it is in m of the Ai’s, we count it 
once in N, subtract it m times in S1, add it 
back in C(m, 2) times, subtract it C(m, 3), etc.

• This sum is 1 if m = 0 and 0 otherwise.



Counting a Union

• Suppose I want the size of the union A1 ∪ … 
∪ An.  This is just N minus the number we just 
computed, which is thus S1 - S2 + S3 - … + 
(-1)n+1Sn.

• This generalizes the formulas we have been 
using, |A1∪A2| = S1 - S2 and |A1∪A2∪A3| = S1 - 
S2 + S3. 



Card Hands With No Voids

• Of the C(52, 6) possible six-card hands from a 
standard deck, how many have at least one 
card of each suit?

• We let A1 be the set of hands with no spades, 
A2 those with no hearts, A3 no diamonds, and 
A4 no clubs.  We can easily see that |Ai| = C(39, 
6), that |Ai∩Aj| = C(26, 6), that |Ai∩Aj∩Ak| = 
C(13, 6), and that |A1∩A2∩A3∩A4| = 0.

• The IE formula gives us C(52, 6) - 4C(39, 6) + 
6C(26, 6) - 4C(13, 6) + 0.



Upper Bounds on Solutions

• We earlier used generating functions to 
attack problems like the following: How many 
solutions to x1+…+x6 = 20 have 0 ≤ xi ≤ 8?

• We let Ai be the set of non-negative solutions 
to this sum that have xi > 8.

• We know N = C(20+6-1, 20), that |Ai| = 
C(11+6-1, 11), and that |Ai∩Aj| = (2+6-1, 2).  
(The larger intersections are empty.) So our 
answer is C(25, 20) - 6C(15, 11) + 15C(7, 2).



The Derangement Problem

• If n people each check a hat and the hats are 
returned to them randomly, what is the 
probability that no one gets their own hat?

• We let N = n! be the set of all permutations, 
and let Ai be the ones where person i gets 
their own hat back.

• It is easy to see that |Ai| = (n-1)!, and that the 
intersection of k Ai’s has size (n-k)!.



The Derangement Problem

• The number Sk is thus C(n, k)(n-k)! = n!/k!.

• Applying the IE formula, we compute the 
number of permutations not in any Ai as n! times 
the sum for k from 0 to n of (-1)k/k!.

• This last sum is the sum of the first n+1 terms 
of the power series for e-1  = 1/e, and this 
number is the probability that no one gets their 
own hat.



More on Derangements

• The number Dn of derangements is also given 
by the recurrence Dn = nDn-1 + (-1)n for n ≥ 2, 
with D0 = 1 and D1 = 0.

• This recurrence can be derived by arithmetic 
from the more natural Dn = (n-1)(Dn-1 + Dn-2), 
which comes from seeing where the first item 
goes and whether it is in an orbit of size 2.

• This recurrence can also be used to get the 
EGF for Dn, which is e-x/(1-x).



Chromatic Polynomials Again

• Let G be a graph with vertices x1, x2, x3, and 
x4, and five edges (all but x2x4).  How many 
legal n-colorings does this graph have?

• We let N be the total number of colorings of 
the four vertices, n4, and let A1,…,A5 be the 
sets of colorings that fail the test for each of 
the five edges.

• We have |Ai| = n3 for each edge, and |Ai∩Aj| = 
n2 for each pair of edges.



Chromatic Polynomials Again

• What about the three-way intersections?  Of 
the ten sets of three edges, two form 
triangles and can each have a common color 
in n2 ways, while the other eight involve all 
four vertices and allow only n colorings.  The 
four-way and five-way intersections each 
allow n colorings.

• The chromatic polynomial, our answer, is thus 
n4 - 5n3 + 10n2 - [2n2 + 8n] + 5n - n which is 
n4 - 5n3 + 8n2 -4n.



Number in m or ≥ m Sets

• Again let us have a set of N elements, with n 
subsets A1,…,An.  How many of the elements 
are in exactly m of the subsets?  Call this Nm.

• We can start with Sm, the sum of the sizes of 
all m-way intersections.  Every element in 
exactly m sets will be in exactly one of these 
m-way intersections.

• But the elements in more than m subsets will 
also be counted multiple times in Sm.



Number in m or ≥ m Sets

• The correct formula for Nm is similar to the IE 
formula:  Nm = Sm - C(m+1, m)Sm+1 + C(m+2, 
m)Sm+2 + … + (-1)n-mC(n, m)Sn.

• The similar formula for Nm*, the number of 
elements in at least m sets, is Nm* = Sm - C(m, 
m-1)Sm+1 + C(m+1, m-1)Sm+2 + … + (-1)n-mC(n-1, 
m-1)Sn.

• We verify each of these formulas by showing that 
each element we don’t want is counted a net of 
zero times.



One More Example

• Consider strings of length 4 over {0, 1, 2} 
with exactly two 1’s.  If Ai is the set of strings 
with a 1 in position i, we want the number 
N2.  By the formula this is S2 - C(3, 2)S3 + 
C(4, 2)S4. (Tucker has some typos here.)

• Since S2 = C(4, 2)32 = 54, S3 = C(4, 3)31 = 12, 
and S4 = 1, we have 54 - 3⋅12 + 6⋅1 = 24.

• Similarly N2* = S2 - C(2, 1)S3 + C(3, 1)S4 = 54 
- 2⋅12 + 3⋅1 = 33.


