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Recurrences and GF's 

• Functional Equations

• The Pizza Problem Again

• Fibonacci Again

• Selection Without Repetition

• Catalan Numbers Again

• Simultaneous Recurrences 

• The Method of Partial Fractions



Functional Equations

• If I have a function a0, a1,… defined by a 
recurrence, it has an associated GF g(x) = a0 
+ a1x + a2x2 + …, and sometimes we can use 
the recurrence to determine the GF.

• If we can relate g(x) to itself and to other 
functions of x in a functional equation, we 
may be able to solve this equation to 
determine g(x)



Functional Equation Example

• Suppose I can determine that g(x) = x2g(x) - 2x.  
Then I can treat g(x) as a single variable y, giving y 
= x2y - 2x, and then solve for y treating functions 
of x alone as constants, getting y = -2x/(1-x2).

• Given an equation like (1-x2)[g(x)]2 - 4xg(x) + 4x2 
= 0, we can apply the quadratic formula.  We have 
ay2 + by + c = 0, with a = 1-x2, b = -4x, and c = 
4x2.

• This solves to y = (4x ± 4x2)/2(1-x2), two 
solutions from which we pick one matching a0. 



The Pizza Problem Again

• Remember that if an is the number of pieces 
we can make by n straight cuts of a convex 
pizza, we had a1 = 1 and an = an-1 + n.

• For every n with n ≥ 1, we have anxn = an-1xn-1 
+ nxn.  Summing these terms, we get g(x) - a0 
= ∑1∞(an-1x + nxn) = xg(x) + x/(1-x2).
(Remember that 1/(1-x)2 = 1 + 2x + 3x2 + …)

• So g(x) - 1 = xg(x) + x/(1-x)2, g(x)(1-x) = 1 + 
x/(1-x)2, and g(x) = 1/(1-x) + x/(1-x)3.  This 
solves to an = 1 + C(n+1, 2) as we had before.



Fibonacci Again

• Let’s now solve the Fibonacci recurrence an = 
an-1 + an-2, with a0 = a1 = 1.  We let g(x) be the 
sum for all n of anxn, and then g(x) - a0 - a1x is 
the same sum for all n with n ≥ 2, where the 
recurrence holds.

• We get g(x) - a0 - a1x = ∑2∞(an-1xn + an-2xn) = 
x[g(x) - a0] + x2g(x).

• This gives g(x)(1-x-x2) = 1 or g(x) = 1/(1-x-x2), 
which we can solve by the quadratic formula.



Fibonacci Again

• The roots of 1-x-x2 = 0 are α1 = (1+√5)/2 and 
α2 = (1-√5)/2, so that the denominator of g(x) 
factors into (1-α1x)(1-α2x).

• By the method of partial fractions, we write 
1/(1-α1x)(1-α2x) as y/(1-α1x) + z/(1-α2) and 
solve for y and z to get the values y = α1/√5 
and z = -α2/√5.

• Now 1/(1-α1x) is the GF for 1+α1x+α12x2+…, 
and 1/(1-α2x) is the GF for 1+α2x+α2x2+…



Fibonacci Again

• This means that g(x) = y/(1-α1x) + z/(1-α2x) 
is the GF for an = yα1n + zα2n, just as we 
found before.

• Of course, to find the value of a10 we would 
be much better off calculating a2, a3,…,a10 in 
order using the recurrence, rather than 
evaluating the GF coefficient.

• We can use similar methods with any linear 
recurrence.



Method of Partial Fractions

• Let’s take another look at using partial 
fractions to solve general homogeneous 
linear recurrences.

• We know that over the complex numbers, a 
degree-r polynomial g(x) factors into the 
product of r linear polynomials, with some 
perhaps multiple.

• If g(x) = 0,  any polynomial at all is equal to 
one of degree at most r-1, by long division.



Method of Partial Fractions

• Suppose that g(x) = (1-α)(1-β)(1-γ)2.  
Consider any polynomial of the form A/(1-α) 
+ B/(1-β) + (Cx+D)/(1-γ)2.

• By taking a common denominator, we can 
show that this polynomial is equal to f(x)/g(x), 
where f(x) has degree at most r-1.

• And given any such f(x), we can find A, B, C, 
and D to put it in the other form.  This 
explains, for example, the An+B term in our 
general solution when we have a double root.



Selection Without Repetition

• In the spirit of solving more known problems 
in new ways, let’s look again at the number of 
ways to choose k objects from a set of n 
objects, without repetition.

• Consider a family of GF’s g0, g1, g2,… with gn(x) 
= an,0 + an,1x + an,2x2 +… for each n.  We’ll let 
an,k be our desired number.

• We know that these coefficients satisfy the  
recurrence rule an,k = an-1,k + an-1,k-1, with initial 
conditions an,0 = 1 and a0,k = 0 for k > 0.



Selection Without Repetition

• For each n, gn(x) - 1 = ∑1n (an-1,kxk + an-1,k-1xk) 
= gn-1(x) - 1 + xgn-1(x).

• This yields a functional equation gn(x) = 
(1+x)gn-1(x), which solves to gn(x) = (1+x)n 
with the initial condition g0(x) = 1.

• So from the recurrence, we get a generating 
function that we recognize by the binomial 
theorem, so we know that an,k = C(n, k).



Catalan Numbers Again

• Placing parentheses to multiply n numbers 
gave us the Catalan recurrence relation, with 
an = a1an-1+…+an-1a1, a0 = 0, and a1 = 1. 

• Why is this?  The first left parenthesis and its 
matching right parenthesis enclose some 
number i of the n numbers.  For each i, there 
are ai ways to group those first i numbers and 
an-i ways to group the last n-i.



Catalan Numbers Again
• The parenthesizing sequence starts out a1 = 

1, a2 = 1, a3 = 2, a4 = 5, a5 = 14, and a6 = 42. 

• The Catalan recurrence describes a number 
of combinatorial problems, with varying initial 
conditions.

• If I have an n-node rooted binary tree with i 
nodes in its left subtree, it has n-i-1 nodes in 
its right subtree.  So if tn is the number of n-
node trees, we have that tn = t0tn-1 + … + 
tn-1t0, with t0 = t1 = 1, giving t2 = 2, t3 = 5,… 
which is the same sequence shifted by one.



Catalan Numbers Again

• If g(x) = a0+a1x+a2x2+…, the RHS is the 
coefficient of xn in g(x)g(x) for n ≥ 2, and we 
get g(x) - a1x - a0 = g(x) - x = [g(x)]2. 

• Solving this quadratic equation gives g(x) = (1 
± √(1-4x))/2.  For the parenthesizing 
sequence, we want to make g(0) = 0, so we 
choose (1-√(1-4x))/2.



Generalized Binomial Theorem

• How can get coefficients for a GF like √(1-4x)?

• This involves a generalization of the binomial 
theorem, involving a generalization of binomial 
coefficients.

• We can still define (1+y)q, where q is any real 
number (not necessarily an integer), as the sum 
of C(q, n)yn, where C(q, n) must be defined.

• We let c(q, n) be q(q-1)(q-2)…(q-n+1)/n!, just as 
for integers.



Generalized Binomial Theorem

• What does this tell us when q = 1/2?  We get 
C(1/2, 0) = 1, C(1/2, 1) = 1/2, C(1/2, 2) = (1/2)
(-1/2)/2! = -1/8, and in general C(1/2, n) = 1(-1)
(-3)(-5)…(-(2n-3))/2nn!.

• This lets us evaluate (1-4x)1/2.  We get the sum 
over all n of C(1/2, n)(-4)n = -1(1)(3)…(2n-3)2n/n!.

• Some fooling around with powers of to gets us 
from this to the fact that the nth Catalan number 
is (1/n)C(2n-2, n-1).  I’ll omit the details here.



Simultaneous Recurrences

• Example 5 of Tucker’s section 7.5 attacks a 
system of simultaneous recurrences: an = an-1 
+ bn-1 + cn-1, bn = 3n-1 - cn-1, and cn = 3n-1 - bn-1.

• These arose from the example of ternary 
strings of length n, where an is the number 
with an even number of 0’s and an even 
number of 1’s, bn the number with even 0’s 
and odd 1’s, and cn the number with odd 0’s 
and even 1’s.  (The fourth case is 3n-an-bn-cn.)



Simultaneous Recurrences

• We also have initial conditions a0 = 1, b0 = 0, 
and c0 = 0.

• Let A(x), B(x), and C(x) be the GF’s for these 
three sequences.

• Tucker goes through a derivation where he 
expresses each of these GF’s as a function of 
the others, for example A(x) - 1 = xA(x) + 
xB(x) + xC(x) and B(x) - 1 = x/(1-3x) - xC(x).  
Having each of B and C in terms of the other 
lets him solve for those two, then find A.


