COMPSCI 575/MATH 513 Combinatorics and Graph Theory

Lecture #25: Recurrences and Generating Functions (Tucker Section 7.5) David Mix Barrington 9 November 2016

Recurrences and GF's

- Functional Equations
- The Pizza Problem Again
- Fibonacci Again
- Selection Without Repetition
- Catalan Numbers Again
- Simultaneous Recurrences
- The Method of Partial Fractions

Functional Equations

- If I have a function a₀, a₁,... defined by a recurrence, it has an associated GF g(x) = a₀
 + a₁x + a₂x² + ..., and sometimes we can use the recurrence to determine the GF.
- If we can relate g(x) to itself and to other functions of x in a functional equation, we may be able to solve this equation to determine g(x)

Functional Equation Example

- Suppose I can determine that g(x) = x²g(x) 2x. Then I can treat g(x) as a single variable y, giving y = x²y - 2x, and then solve for y treating functions of x alone as constants, getting y = -2x/(1-x²).
- Given an equation like (1-x²)[g(x)]² 4xg(x) + 4x²
 = 0, we can apply the quadratic formula. We have ay² + by + c = 0, with a = 1-x², b = -4x, and c = 4x².
- This solves to $y = (4x \pm 4x^2)/2(1-x^2)$, two solutions from which we pick one matching a_0 .

The Pizza Problem Again

- Remember that if a_n is the number of pieces we can make by n straight cuts of a convex pizza, we had $a_1 = 1$ and $a_n = a_{n-1} + n$.
- For every n with $n \ge 1$, we have $a_n x^n = a_{n-1} x^{n-1} + nx^n$. Summing these terms, we get $g(x) a_0$ = $\sum_{n \ge 1} (a_{n-1}x + nx^n) = xg(x) + x/(1-x^2)$. (Remember that $1/(1-x)^2 = 1 + 2x + 3x^2 + ...)$
- So $g(x) I = xg(x) + x/(I-x)^2$, $g(x)(I-x) = I + x/(I-x)^2$, and $g(x) = I/(I-x) + x/(I-x)^3$. This solves to $a_n = I + C(n+I, 2)$ as we had before.

Fibonacci Again

- Let's now solve the Fibonacci recurrence $a_n = a_{n-1} + a_{n-2}$, with $a_0 = a_1 = 1$. We let g(x) be the sum for all n of $a_n x^n$, and then $g(x) a_0 a_1 x$ is the same sum for all n with $n \ge 2$, where the recurrence holds.
- We get $g(x) a_0 a_1x = \sum_{2}^{\infty} (a_{n-1}x^n + a_{n-2}x^n) = x[g(x) a_0] + x^2g(x).$
- This gives $g(x)(1-x-x^2) = 1$ or $g(x) = 1/(1-x-x^2)$, which we can solve by the quadratic formula.

Fibonacci Again

- The roots of $1-x-x^2 = 0$ are $\alpha_1 = (1+\sqrt{5})/2$ and $\alpha_2 = (1-\sqrt{5})/2$, so that the denominator of g(x) factors into $(1-\alpha_1x)(1-\alpha_2x)$.
- By the method of partial fractions, we write $1/(1-\alpha_1x)(1-\alpha_2x)$ as $y/(1-\alpha_1x) + z/(1-\alpha_2)$ and solve for y and z to get the values $y = \alpha_1/\sqrt{5}$ and $z = -\alpha_2/\sqrt{5}$.
- Now $I/(I-\alpha_1 x)$ is the GF for $I+\alpha_1 x+\alpha_1^2 x^2+...$, and $I/(I-\alpha_2 x)$ is the GF for $I+\alpha_2 x+\alpha_2 x^2+...$

Fibonacci Again

- This means that $g(x) = y/(1-\alpha_1 x) + z/(1-\alpha_2 x)$ is the GF for $a_n = y\alpha_1^n + z\alpha_2^n$, just as we found before.
- Of course, to find the value of a₁₀ we would be much better off calculating a₂, a₃,...,a₁₀ in order using the recurrence, rather than evaluating the GF coefficient.
- We can use similar methods with any linear recurrence.

Method of Partial Fractions

- Let's take another look at using partial fractions to solve general homogeneous linear recurrences.
- We know that over the complex numbers, a degree-r polynomial g(x) factors into the product of r linear polynomials, with some perhaps multiple.
- If g(x) = 0, any polynomial at all is equal to one of degree at most r-1, by long division.

Method of Partial Fractions

- Suppose that $g(x) = (I-\alpha)(I-\beta)(I-\gamma)^2$. Consider any polynomial of the form A/(I- α) + B/(I- β) + (Cx+D)/(I- γ)².
- By taking a common denominator, we can show that this polynomial is equal to f(x)/g(x), where f(x) has degree at most r-1.
- And given any such f(x), we can find A, B, C, and D to put it in the other form. This explains, for example, the An+B term in our general solution when we have a double root.

Selection Without Repetition

- In the spirit of solving more known problems in new ways, let's look again at the number of ways to choose k objects from a set of n objects, without repetition.
- Consider a family of GF's $g_0, g_1, g_2, ...$ with $g_n(x) = a_{n,0} + a_{n,1}x + a_{n,2}x^2 + ...$ for each n. We'll let $a_{n,k}$ be our desired number.
- We know that these coefficients satisfy the recurrence rule $a_{n,k} = a_{n-1,k} + a_{n-1,k-1}$, with initial conditions $a_{n,0} = 1$ and $a_{0,k} = 0$ for k > 0.

Selection Without Repetition

- For each n, $g_n(x) I = \sum_{i=1}^{n} (a_{n-1,k}x^k + a_{n-1,k-1}x^k)$ = $g_{n-1}(x) - I + xg_{n-1}(x)$.
- This yields a functional equation $g_n(x) = (1+x)g_{n-1}(x)$, which solves to $g_n(x) = (1+x)^n$ with the initial condition $g_0(x) = 1$.
- So from the recurrence, we get a generating function that we recognize by the binomial theorem, so we know that a_{n,k} = C(n, k).

Catalan Numbers Again

- Placing parentheses to multiply n numbers gave us the Catalan recurrence relation, with a_n = a₁a_{n-1}+...+a_{n-1}a₁, a₀ = 0, and a₁ = 1.
- Why is this? The first left parenthesis and its matching right parenthesis enclose some number i of the n numbers. For each i, there are a_i ways to group those first i numbers and a_{n-i} ways to group the last n-i.

Catalan Numbers Again

- The parenthesizing sequence starts out $a_1 = 1$, $a_2 = 1$, $a_3 = 2$, $a_4 = 5$, $a_5 = 14$, and $a_6 = 42$.
- The Catalan recurrence describes a number of combinatorial problems, with varying initial conditions.
- If I have an n-node rooted binary tree with i nodes in its left subtree, it has n-i-1 nodes in its right subtree. So if t_n is the number of n-node trees, we have that t_n = t₀t_{n-1} + ... + t_{n-1}t₀, with t₀ = t₁ = 1, giving t₂ = 2, t₃ = 5,... which is the same sequence shifted by one.

Catalan Numbers Again

- If $g(x) = a_0 + a_1x + a_2x^2 + \dots$, the RHS is the coefficient of x^n in g(x)g(x) for $n \ge 2$, and we get $g(x) - a_1x - a_0 = g(x) - x = [g(x)]^2$.
- Solving this quadratic equation gives g(x) = (1 ± √(1-4x))/2. For the parenthesizing sequence, we want to make g(0) = 0, so we choose (1-√(1-4x))/2.

Generalized Binomial Theorem

- How can get coefficients for a GF like $\sqrt{(1-4x)}$?
- This involves a generalization of the binomial theorem, involving a generalization of binomial coefficients.
- We can still define (1+y)^q, where q is any real number (not necessarily an integer), as the sum of C(q, n)yⁿ, where C(q, n) must be defined.
- We let c(q, n) be q(q-1)(q-2)...(q-n+1)/n!, just as for integers.

Generalized Binomial Theorem

- What does this tell us when q = 1/2? We get C(1/2, 0) = 1, C(1/2, 1) = 1/2, C(1/2, 2) = (1/2) (-1/2)/2! = -1/8, and in general C(1/2, n) = 1(-1) (-3)(-5)...(-(2n-3))/2ⁿn!.
- This lets us evaluate $(1-4x)^{1/2}$. We get the sum over all n of $C(1/2, n)(-4)^n = -1(1)(3)...(2n-3)2^n/n!$.
- Some fooling around with powers of to gets us from this to the fact that the nth Catalan number is (1/n)C(2n-2, n-1). I'll omit the details here.

Simultaneous Recurrences

- Example 5 of Tucker's section 7.5 attacks a system of simultaneous recurrences: $a_n = a_{n-1} + b_{n-1} + c_{n-1}$, $b_n = 3^{n-1} c_{n-1}$, and $c_n = 3^{n-1} b_{n-1}$.
- These arose from the example of ternary strings of length n, where a_n is the number with an even number of 0's and an even number of 1's, b_n the number with even 0's and odd 1's, and c_n the number with odd 0's and even 1's. (The fourth case is 3ⁿ-a_n-b_n-c_n.)

Simultaneous Recurrences

- We also have initial conditions $a_0 = 1, b_0 = 0$, and $c_0 = 0$.
- Let A(x), B(x), and C(x) be the GF's for these three sequences.
- Tucker goes through a derivation where he expresses each of these GF's as a function of the others, for example A(x) I = xA(x) + xB(x) + xC(x) and B(x) I = x/(I-3x) xC(x). Having each of B and C in terms of the other lets him solve for those two, then find A.