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| am in an Opera!

® Valley Light Opera is doing
Gilbert and Sullivan’s
Ruddigore November 12, | 3,

18, 19,and 20 at the
Academy of Music in Noho.

® Preview show Friday | ™ at
7:30 costs $5 instead of $15
or $10 college rush at other
shows: see vlo.org.




Systems of Recurrences

® Sometimes we need more than one
recurrence to solve a counting problem.

® Consider strings over {a,b,c} with an even
number of b’s and an odd number of c’s.

® |f f(n) is the number of such strings of length
n, we have that f(n) = f(n-1) + g(n-1) + h(n-1),
where g(n) is the number with odd numbers
of both b’s and c’s, and h(n) the number with
even numbers of each.



Systems of Recurrences

® Then g(n), for example,is g(n-1) + f(n-1) +
i(n-1), where i(n) is the number with an even
number of b’s and an odd number of c’s.

® Each of the four functions is defined by a
recurrence using itself and two of the others.

® By induction on n,assuming we define f(0),
g(0), h(0),and i(0) to each be |, we have well-
defined and correct values f(n), g(n), h(n), and
i(n) for each n.



Divide and Conquer

® Many algorithms take a divide and conquer
approach, reducing a problem to similar
problems with smaller parameters. Much of
COMPSCI 311 is spent analyzing the resources
used by such algorithms, and recurrences are a
key tool in this analysis.

® |f a, is the number of steps to solve a problem
of size n, we often get a recurrence of the form
an = can2 + f(n), where c is a constant and f(n) is
the time to split and merge the subproblems.



Simple D&C Examples

® |f c = | and f(n) is constant, we have a, = ann
+ d, which solves to a, = dlogz(n) + A, where
A is a constant chosen to fit the initial
conditions. VWe assume here that nis a
power of 2, to avoid ceilings and floors.

® |f c =2 and f(n) is constant, we have a, = 2ann
+ d, which solves to an =An - d. Our 3n/2 - 2
steps to find max and min fits into this case.

® |f ¢ =2 and f(n) = dn, we have a, = 2a,2 + dn,
which solves to a, = dn(logzn + A).



Fast Multiplication

® Normally multiplying two n-bit numbers
would require O(n?) bit multiplications.

® By adding some cheaper additions, though, we
can do it with fewer multiplications.

® \Write the numbers w| and w> as ujv| and
u2v2, where the u’s and v’s are n/2 bit
numbers. Then w| X wy = (U1 Xu2)2" + [(uixVv2)
+(viXu2)]2"2 + (vi%v2). We have four
products of n/2-bit numbers.



Fast Multiplication

® (u;Xu)2" + [(uixva) +(vixu2)]2"2 + (viXvy)
has four products of n/2-bit numbers.

® But if we compute u|Xuy, viXvy,and (ujt+v)) X
(u2tv2), using only three multiplications, we
can get all three terms we need by addition.

® Our number of multiplications satisfies the
recurrence an, = 3an;2, Which turns out to
solve to an = n'983 = n!38--- ‘much better than
n%. Of course there are complications like
the time for the additions.



The CLRS Master Theorem

® |In COMPSCI 311 we learn a theorem called
the Master Theorem in the popular CLRS
textbook. It gives a solution to the recurrence
an = can/k + f(n), which applies when we divide
the size-n problem into ¢ problems of size n/k
each, with f(n) overhead to split the problems
and merge the solutions.

® The solutions are given in big-O form, befitting
a course where we usually regard resource
bounds this way.



The CLRS Master Theorem

We have a, = canx + f(n).

The result depends on the relationship
between f(n) and g(n) = n'°2 <, where the log is
base k. The statement below is approximate.

If f(n) = o(g(n)), then a, = O(g(n)).
If f(n) = ©(g(n)), then a, = ©(g(n)log n).
If f(n) = w(g(n)), then a, = O(f(n)).



Linear Recurrences

® A linear recurrence is one where the new
term a, is given by a linear combination of the
r most recent terms, by a rule of the form as
= Clan-| T C2an2 T ... T Cran-r.

® Since ak is not defined for negative k, we have

to give initial conditions aj,...,a~| as well as
the usual ao.

® There’s a general solution for these, which is
reminiscent of the general solution for linear
differential equations.



Solving Linear Recurrences

® |t turns out that every such equation has a
set of solutions that are themselves linear

combinations of sequences of the form ",
for some fixed numbers &.

® |f X is going to lead to such a solution, we
need to have &" = c;jx™!' + ... + ¢, which
we can reduce to &" = ¢~ + ... + ¢, by
dividing the first equation by "



Solving Linear Recurrences

® So X must satisfy the equation &' - ¢;&X"™! -
c2X"™?% - ... - ¢ = 0, which is called the
characteristic equation of the recurrence.

® Over the complex numbers, at least, this
equation of degree r has exactly r roots,
counting multiplicity. (We’ll assume for the
time being that all the roots are distinct.)

® |f i,...,Xr are the roots, any function of the
form Ajx;" + ... + A" will be a solution to
the recurrence, and these are all of them.



Dealing With Initial Conditions

® More precisely, any linear combination of the
functions ;" will satisfy the rule of the
recurrence. In order to satisfy the initial
conditions as well, we need to set the Aj’s.

® [fag,...,a~ are the values of ay,...,ar| given
by the initial conditions, then for every k with
0 < k < r-1, we must have Ao ¢ + Ayoxok +
Lo A= ayl.

® These are r equations in r unknowns, and
have exactly one solution.



Example: Exponential Rabbits

® |f we start at time O with six rabbits, and the

population doubles each year, how many do
we have after n years!

® The recurrence is an = 2an.1, with initial
condition ap = 6. (Since r = | here, we need
only one initial condition.) The characteristic
equation is &' - 2 = 0, solving to & = 2.

® So any function of the form A2" meets the
rule, and to have A2° = 6, we choose A = 6.



Example: Fibonacci Rabbits

® The Fibonacci function was also originally
designed to model rabbit populations, with
each rabbit producing one offspring in every
generation except its first. We don’t model
any rabbit deaths.

® So the population a, after n generations is the
an-1 from the previous generation, plus one
more for each of the a2 rabbits that are
more than one generation old.



Example: Fibonacci Rabbits

® So the characteristic equation is &? - & - | =0,
which by the quadratic formula has two roots,

o = (1++/5)/2 and &2 = (1-/5)/2.

® Any function of the form A" + A,X;" follows
the recursive rule. SoIving the pair of
equationsA| +Ax=a0 = |l and A|X| + Axxp =
a)” = | gives us A| = 0(1/+/5 and Az = -02/+/5.

® |t's perhaps surprising that these irrational
coefficients and bases of powers give us the
familiar sequence |, 1,2, 3,5,8, |13, 21,...



Complex Roots

® How would we get complex numbers in the
solution to a linear recurrence! Let an, = -an.|
-an-2, With initial conditions ag = 0 and a; = |.

® We get a sequence O, |,-1,0,1,-1,0, I,-1,...,
which doesn’t look exponential at all.

® But in fact the characteristic equation &?* + &
+ | = 0 has two roots (-1++/-3)/2, the two
complex cube roots of unity. The correct
linear combination of powers of these gives
the real numbers of our periodic sequence.



Multiple Roots

® What about a rule like a, = 4an.| - 4an-2, with
characteristic equation &?* - 4x + 4 = 0,
which has a double root of & = 2?

® |f we start withago=0anda| = |, the
sequence goes on 4, 12,32, 80, 192, which we
might recognize as an = n2™' Where did this
come from?

® [he function 2" satisfies the rule for the
recurrence, but it turns out that n2" does as

well, as n2" = 4(n-1)2"! - 4(n-2)2"2.



Multiple Roots

® |f X is a root of the characteristic equation with
multiplicity m, then it turns out that n&", n?a",...,
n™! " all satisfy the rule, and any function that
satisfies the rule is a linear combination of these

functions and X" itself.

® VWe won’t prove this here, but on HW#6 you’ll show
the m = 3 case (Exercise 7.3.9, not in the back of the

book).

® Note that for a characteristic equation of degree r,
we still have exactly r functions, so that there will be
one linear combination meeting the initial conditions.



Inhomogeneous Linears

® For example, consider a recurrence of degree
|, so that a, = can.| + f(n). The h-part is “can.1”
and the i-part is f(n).

® |f we can find any function z such that z, =
czn-1 * f(n), then any function of the form a, =
Ac" + z, will satisfy the recurrence, and we can
use the initial conditions to find A as before.

® A special case is when ¢ = |,so that a, = an.| +
f(n). This has the solution z,=f(l) + ... + f(n),
so that a, = ap + (1) + f(2) + ... + f(n).



Inhomogeneous Linears

To solve an = can-| + f(n) with ¢ # |, we can use
some standard general solutions, that we will
justify with generating functions next lecture.

If f(n) is a constant d, the particular solution is
another constant B.

If f(n) = dn, we have Bin + Bo for two constants
Bo and B,.

For f(n) = dn? we have Ban? + Bin + By, and for
f(n) = ed" we have Bd".



Compound Inhomogeneous

® Example 3 in Section 7.4 has the recurrence a, =
3an-| - 4n + 3-2", and asks for a general solution.

® The difficulty here is that the i-part is the sum of
two functions, but we can proceed by finding
particular solutions for each of the two
functions, and the adding them to A3".

® Jo get yn = 3yn.1 - 4n, we look for a solution of
the form Bin + Bo, and get 2n + 3 by taking the
equation Bin + Bo = 3(Bin + Bo) - 4n and solving
for Bo and B,.



Compound Inhomogeneous

® Example 3 in Section 7.4 has the recurrence a, =
3an-1 - 4n + 3-2",and asks for a general solution.

® Jo get y, = 3yn.| + 3(2"), we look for a solution
of the form B2", and get 6(2") by taking the
equation B2" = 3B2™! + 3(2") and solving for B.

® Our general solutionisa, =A3"+ 2n + 3 +
6(2").



