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Recurrences 

• Systems of Recurrences

• Divide and Conquer Recurrences

• The CLRS Master Theorem

• Linear Recurrences

• Solving Linear Recurrences

• Inhomogeneous Recurrences

• Compound Inhomogeneous Terms



I am in an Opera!

• Valley Light Opera is doing 
Gilbert and Sullivan’s 
Ruddigore November 12, 13, 
18, 19, and 20 at the 
Academy of Music in Noho.

• Preview show Friday 11th at 
7:30 costs $5 instead of $15 
or $10 college rush at other 
shows: see vlo.org.



Systems of Recurrences

• Sometimes we need more than one 
recurrence to solve a counting problem.

• Consider strings over {a,b,c} with an even 
number of b’s and an odd number of c’s.

• If f(n) is the number of such strings of length 
n, we have that f(n) = f(n-1) + g(n-1) + h(n-1), 
where g(n) is the number with odd numbers 
of both b’s and c’s, and h(n) the number with 
even numbers of each.



Systems of Recurrences

• Then g(n), for example, is g(n-1) + f(n-1) + 
i(n-1), where i(n) is the number with an even 
number of b’s and an odd number of c’s.

• Each of the four functions is defined by a 
recurrence using itself and two of the others.

• By induction on n, assuming we define f(0), 
g(0), h(0), and i(0) to each be 1, we have well-
defined and correct values f(n), g(n), h(n), and 
i(n) for each n.



Divide and Conquer

• Many algorithms take a divide and conquer 
approach, reducing a problem to similar 
problems with smaller parameters.  Much of 
COMPSCI 311 is spent analyzing the resources 
used by such algorithms, and recurrences are a 
key tool in this analysis.

• If an is the number of steps to solve a problem 
of size n, we often get a recurrence of the form 
an = can/2 + f(n), where c is a constant and f(n) is 
the time to split and merge the subproblems.



Simple D&C Examples

• If c = 1 and f(n) is constant, we have an = an/2 
+ d, which solves to an = dlog2(n) + A, where 
A is a constant chosen to fit the initial 
conditions.  We assume here that n is a 
power of 2, to avoid ceilings and floors.

• If c = 2 and f(n) is constant, we have an = 2an/2 
+ d, which solves to an = An - d.  Our 3n/2 - 2 
steps to find max and min fits into this case.

• If c = 2 and f(n) = dn, we have an = 2an/2 + dn, 
which solves to an = dn(log2n + A).



Fast Multiplication

• Normally multiplying two n-bit numbers 
would require O(n2) bit multiplications.

• By adding some cheaper additions, though, we 
can do it with fewer multiplications.

• Write the numbers w1 and w2  as u1v1 and 
u2v2, where the u’s and v’s are n/2 bit 
numbers.  Then w1 × w2 = (u1×u2)2n + [(u1×v2) 
+(v1×u2)]2n/2 + (v1×v2).  We have four 
products of n/2-bit numbers.



Fast Multiplication

• (u1×u2)2n + [(u1×v2) +(v1×u2)]2n/2 + (v1×v2) 
has four products of n/2-bit numbers.

• But if we compute u1×u2, v1×v2, and (u1+v1) × 
(u2+v2), using only three multiplications, we 
can get all three terms we need by addition.

• Our number of multiplications satisfies the 
recurrence an = 3an/2, which turns out to 
solve to an = nlog 3  = n1.585…, much better than 
n2.  Of course there are complications like 
the time for the additions.



The CLRS Master Theorem

• In COMPSCI 311 we learn a theorem called 
the Master Theorem in the popular CLRS 
textbook.  It gives a solution to the recurrence 
an = can/k + f(n), which applies when we divide 
the size-n problem into c problems of size n/k 
each, with f(n) overhead to split the problems 
and merge the solutions.

• The solutions are given in big-O form, befitting 
a course where we usually regard resource 
bounds this way.



The CLRS Master Theorem

• We have an = can/k + f(n).

• The result depends on the relationship 
between f(n) and g(n) = nlog c, where the log is 
base k.  The statement below is approximate.

• If f(n) = o(g(n)), then an = ϴ(g(n)).

• If f(n) = ϴ(g(n)), then an = ϴ(g(n)log n).

• If f(n) = ω(g(n)), then an = ϴ(f(n)).



Linear Recurrences

• A linear recurrence is one where the new 
term an is given by a linear combination of the 
r most recent terms, by a rule of the form an 
= c1an-1 + c2an-2 + … + cran-r.

• Since ak is not defined for negative k, we have 
to give initial conditions a1,…, ar-1 as well as 
the usual a0.

• There’s a general solution for these, which is 
reminiscent of the general solution for linear 
differential equations.



Solving Linear Recurrences

• It turns out that every such equation has a 
set of solutions that are themselves linear 
combinations of sequences of the form αn, 
for some fixed numbers α.

• If α is going to lead to such a solution, we 
need to have αn = c1αn-1 + … + crαn-r, which 
we can reduce to αr = c1αr-1 + … + cr, by 
dividing the first equation by αn-r.



Solving Linear Recurrences

• So α must satisfy the equation αr - c1αr-1 - 
c2αn-2 - … - cr = 0, which is called the 
characteristic equation of the recurrence.

• Over the complex numbers, at least, this 
equation of degree r has exactly r roots, 
counting multiplicity.  (We’ll assume for the 
time being that all the roots are distinct.)

• If α1,…,αr are the roots, any function of the 
form A1α1n + … + Arαrn will be a solution to 
the recurrence, and these are all of them.



Dealing With Initial Conditions

• More precisely, any linear combination of the 
functions αin will satisfy the rule of the 
recurrence.  In order to satisfy the initial 
conditions as well, we need to set the Ai’s.

• If a0ʹ,…, ar-1ʹ are the values of a0,…, ar-1 given 
by the initial conditions, then for every k with 
0 ≤ k ≤ r-1, we must have A1α1k + A2α2k + 
… +  Arαrk = akʹ.

• These are r equations in r unknowns, and 
have exactly one solution.



Example: Exponential Rabbits

• If we start at time 0 with six rabbits, and the 
population doubles each year, how many do 
we have after n years?

• The recurrence is an = 2an-1, with initial 
condition a0 = 6.  (Since r = 1 here, we need 
only one initial condition.)  The characteristic 
equation is α1 - 2 = 0, solving to α = 2. 

• So any function of the form A2n meets the 
rule, and to have A20 = 6, we choose A = 6.



Example: Fibonacci Rabbits

• The Fibonacci function was also originally 
designed to model rabbit populations, with 
each rabbit producing one offspring in every 
generation except its first.  We don’t model 
any rabbit deaths.

• So the population an after n generations is the 
an-1 from the previous generation, plus one 
more for each of the an-2 rabbits that are 
more than one generation old.



Example: Fibonacci Rabbits

• So the characteristic equation is α2 - α - 1 = 0, 
which by the quadratic formula has two roots, 
α1 = (1+√5)/2 and α2 = (1-√5)/2.

• Any function of the form A1α1n + A2α2n follows 
the recursive rule.  Solving the pair of 
equations A1 + A2 = a0ʹ = 1 and A1α1 + A2α2 = 
a1ʹ = 1 gives us A1 = α1/√5 and A2 = -α2/√5.

• It’s perhaps surprising that these irrational 
coefficients and bases of powers give us the 
familiar sequence 1, 1, 2, 3, 5, 8, 13, 21,…



Complex Roots

• How would we get complex numbers in the 
solution to a linear recurrence?  Let an = -an-1 

-an-2, with initial conditions a0 = 0 and a1 = 1.

• We get a sequence 0, 1, -1, 0, 1, -1, 0, 1, -1,…, 
which doesn’t look exponential at all.

• But in fact the characteristic equation α2 + α 
+ 1 = 0 has two roots (-1+√-3)/2, the two 
complex cube roots of unity.  The correct 
linear combination of powers of these gives 
the real numbers of our periodic sequence.



Multiple Roots

• What about a rule like an = 4an-1 - 4an-2, with 
characteristic equation α2 - 4α + 4 = 0, 
which has a double root of α = 2?

• If we start with a0 = 0 and a1 = 1, the 
sequence goes on 4, 12, 32, 80, 192, which we 
might recognize as an = n2n-1.  Where did this 
come from?

• The function 2n satisfies the rule for the 
recurrence, but it turns out that n2n does as 
well, as n2n = 4(n-1)2n-1 - 4(n-2)2n-2.



Multiple Roots
• If α is a root of the characteristic equation with 

multiplicity m, then it turns out that nαn, n2αn,…, 
nm-1αn all satisfy the rule, and any function that 
satisfies the rule is a linear combination of these 
functions and αn itself.

• We won’t prove this here, but on HW#6 you’ll show 
the m = 3 case (Exercise 7.3.9, not in the back of the 
book).

• Note that for a characteristic equation of degree r, 
we still have exactly r functions, so that there will be 
one linear combination meeting the initial conditions.



Inhomogeneous Linears

• For example, consider a recurrence of degree 
1, so that an = can-1 + f(n).  The h-part is “can-1” 
and the i-part is f(n).  

• If we can find any function z such that zn = 
czn-1 + f(n), then any function of the form an =  
Acn + zn will satisfy the recurrence, and we can 
use the initial conditions to find A as before.

• A special case is when c = 1, so that an = an-1 + 
f(n).  This has the solution zn = f(1) + … + f(n), 
so that an = a0 + f(1) + f(2) + … + f(n). 



Inhomogeneous Linears

• To solve an = can-1 + f(n) with c ≠ 1, we can use 
some standard general solutions, that we will 
justify with generating functions next lecture.

• If f(n) is a constant d, the particular solution is 
another constant B.

• If f(n) = dn, we have B1n + B0 for two constants 
B0 and B1.

• For f(n) = dn2 we have B2n2 + B1n + B0, and for 
f(n) = edn we have Bdn.



Compound Inhomogeneous

• Example 3 in Section 7.4 has the recurrence an = 
3an-1 - 4n + 3⋅2n, and asks for a general solution.

• The difficulty here is that the i-part is the sum of 
two functions, but we can proceed by finding 
particular solutions for each of the two 
functions, and the adding them to A3n.

• To get yn = 3yn-1 - 4n, we look for a solution of 
the form B1n + B0, and get 2n + 3 by taking the 
equation B1n + B0 = 3(B1n + B0) - 4n and solving 
for B0 and B1.



Compound Inhomogeneous

• Example 3 in Section 7.4 has the recurrence an = 
3an-1 - 4n + 3⋅2n, and asks for a general solution.

• To get yn = 3yn-1 + 3(2n), we look for a solution 
of the form B2n, and get 6(2n) by taking the 
equation B2n = 3B2n-1 + 3(2n) and solving for B.

• Our general solution is an = A3n + 2n + 3 + 
6(2n).


