
COMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #24: Recurrences: D&C and Linear
(Tucker Sections 7.2, 7.3, and 7.4)
David Mix Barrington
7 November 2016

Recurrences

• Systems of Recurrences

• Divide and Conquer Recurrences

• The CLRS Master Theorem

• Linear Recurrences

• Solving Linear Recurrences

• Inhomogeneous Recurrences

• Compound Inhomogeneous Terms

I am in an Opera!

• Valley Light Opera is doing
Gilbert and Sullivan’s
Ruddigore November 12, 13,
18, 19, and 20 at the
Academy of Music in Noho.

• Preview show Friday 11th at
7:30 costs $5 instead of $15
or $10 college rush at other
shows: see vlo.org.

Systems of Recurrences

• Sometimes we need more than one
recurrence to solve a counting problem.

• Consider strings over {a,b,c} with an even
number of b’s and an odd number of c’s.

• If f(n) is the number of such strings of length
n, we have that f(n) = f(n-1) + g(n-1) + h(n-1),
where g(n) is the number with odd numbers
of both b’s and c’s, and h(n) the number with
even numbers of each.

Systems of Recurrences

• Then g(n), for example, is g(n-1) + f(n-1) +
i(n-1), where i(n) is the number with an even
number of b’s and an odd number of c’s.

• Each of the four functions is defined by a
recurrence using itself and two of the others.

• By induction on n, assuming we define f(0),
g(0), h(0), and i(0) to each be 1, we have well-
defined and correct values f(n), g(n), h(n), and
i(n) for each n.

Divide and Conquer

• Many algorithms take a divide and conquer
approach, reducing a problem to similar
problems with smaller parameters. Much of
COMPSCI 311 is spent analyzing the resources
used by such algorithms, and recurrences are a
key tool in this analysis.

• If an is the number of steps to solve a problem
of size n, we often get a recurrence of the form
an = can/2 + f(n), where c is a constant and f(n) is
the time to split and merge the subproblems.

Simple D&C Examples

• If c = 1 and f(n) is constant, we have an = an/2
+ d, which solves to an = dlog2(n) + A, where
A is a constant chosen to fit the initial
conditions. We assume here that n is a
power of 2, to avoid ceilings and floors.

• If c = 2 and f(n) is constant, we have an = 2an/2
+ d, which solves to an = An - d. Our 3n/2 - 2
steps to find max and min fits into this case.

• If c = 2 and f(n) = dn, we have an = 2an/2 + dn,
which solves to an = dn(log2n + A).

Fast Multiplication

• Normally multiplying two n-bit numbers
would require O(n2) bit multiplications.

• By adding some cheaper additions, though, we
can do it with fewer multiplications.

• Write the numbers w1 and w2 as u1v1 and
u2v2, where the u’s and v’s are n/2 bit
numbers. Then w1 × w2 = (u1×u2)2n + [(u1×v2)
+(v1×u2)]2n/2 + (v1×v2). We have four
products of n/2-bit numbers.

Fast Multiplication

• (u1×u2)2n + [(u1×v2) +(v1×u2)]2n/2 + (v1×v2)
has four products of n/2-bit numbers.

• But if we compute u1×u2, v1×v2, and (u1+v1) ×
(u2+v2), using only three multiplications, we
can get all three terms we need by addition.

• Our number of multiplications satisfies the
recurrence an = 3an/2, which turns out to
solve to an = nlog 3 = n1.585…, much better than
n2. Of course there are complications like
the time for the additions.

The CLRS Master Theorem

• In COMPSCI 311 we learn a theorem called
the Master Theorem in the popular CLRS
textbook. It gives a solution to the recurrence
an = can/k + f(n), which applies when we divide
the size-n problem into c problems of size n/k
each, with f(n) overhead to split the problems
and merge the solutions.

• The solutions are given in big-O form, befitting
a course where we usually regard resource
bounds this way.

The CLRS Master Theorem

• We have an = can/k + f(n).

• The result depends on the relationship
between f(n) and g(n) = nlog c, where the log is
base k. The statement below is approximate.

• If f(n) = o(g(n)), then an = ϴ(g(n)).

• If f(n) = ϴ(g(n)), then an = ϴ(g(n)log n).

• If f(n) = ω(g(n)), then an = ϴ(f(n)).

Linear Recurrences

• A linear recurrence is one where the new
term an is given by a linear combination of the
r most recent terms, by a rule of the form an
= c1an-1 + c2an-2 + … + cran-r.

• Since ak is not defined for negative k, we have
to give initial conditions a1,…, ar-1 as well as
the usual a0.

• There’s a general solution for these, which is
reminiscent of the general solution for linear
differential equations.

Solving Linear Recurrences

• It turns out that every such equation has a
set of solutions that are themselves linear
combinations of sequences of the form αn,
for some fixed numbers α.

• If α is going to lead to such a solution, we
need to have αn = c1αn-1 + … + crαn-r, which
we can reduce to αr = c1αr-1 + … + cr, by
dividing the first equation by αn-r.

Solving Linear Recurrences

• So α must satisfy the equation αr - c1αr-1 -
c2αn-2 - … - cr = 0, which is called the
characteristic equation of the recurrence.

• Over the complex numbers, at least, this
equation of degree r has exactly r roots,
counting multiplicity. (We’ll assume for the
time being that all the roots are distinct.)

• If α1,…,αr are the roots, any function of the
form A1α1n + … + Arαrn will be a solution to
the recurrence, and these are all of them.

Dealing With Initial Conditions

• More precisely, any linear combination of the
functions αin will satisfy the rule of the
recurrence. In order to satisfy the initial
conditions as well, we need to set the Ai’s.

• If a0ʹ,…, ar-1ʹ are the values of a0,…, ar-1 given
by the initial conditions, then for every k with
0 ≤ k ≤ r-1, we must have A1α1k + A2α2k +
… + Arαrk = akʹ.

• These are r equations in r unknowns, and
have exactly one solution.

Example: Exponential Rabbits

• If we start at time 0 with six rabbits, and the
population doubles each year, how many do
we have after n years?

• The recurrence is an = 2an-1, with initial
condition a0 = 6. (Since r = 1 here, we need
only one initial condition.) The characteristic
equation is α1 - 2 = 0, solving to α = 2.

• So any function of the form A2n meets the
rule, and to have A20 = 6, we choose A = 6.

Example: Fibonacci Rabbits

• The Fibonacci function was also originally
designed to model rabbit populations, with
each rabbit producing one offspring in every
generation except its first. We don’t model
any rabbit deaths.

• So the population an after n generations is the
an-1 from the previous generation, plus one
more for each of the an-2 rabbits that are
more than one generation old.

Example: Fibonacci Rabbits

• So the characteristic equation is α2 - α - 1 = 0,
which by the quadratic formula has two roots,
α1 = (1+√5)/2 and α2 = (1-√5)/2.

• Any function of the form A1α1n + A2α2n follows
the recursive rule. Solving the pair of
equations A1 + A2 = a0ʹ = 1 and A1α1 + A2α2 =
a1ʹ = 1 gives us A1 = α1/√5 and A2 = -α2/√5.

• It’s perhaps surprising that these irrational
coefficients and bases of powers give us the
familiar sequence 1, 1, 2, 3, 5, 8, 13, 21,…

Complex Roots

• How would we get complex numbers in the
solution to a linear recurrence? Let an = -an-1

-an-2, with initial conditions a0 = 0 and a1 = 1.

• We get a sequence 0, 1, -1, 0, 1, -1, 0, 1, -1,…,
which doesn’t look exponential at all.

• But in fact the characteristic equation α2 + α
+ 1 = 0 has two roots (-1+√-3)/2, the two
complex cube roots of unity. The correct
linear combination of powers of these gives
the real numbers of our periodic sequence.

Multiple Roots

• What about a rule like an = 4an-1 - 4an-2, with
characteristic equation α2 - 4α + 4 = 0,
which has a double root of α = 2?

• If we start with a0 = 0 and a1 = 1, the
sequence goes on 4, 12, 32, 80, 192, which we
might recognize as an = n2n-1. Where did this
come from?

• The function 2n satisfies the rule for the
recurrence, but it turns out that n2n does as
well, as n2n = 4(n-1)2n-1 - 4(n-2)2n-2.

Multiple Roots
• If α is a root of the characteristic equation with

multiplicity m, then it turns out that nαn, n2αn,…,
nm-1αn all satisfy the rule, and any function that
satisfies the rule is a linear combination of these
functions and αn itself.

• We won’t prove this here, but on HW#6 you’ll show
the m = 3 case (Exercise 7.3.9, not in the back of the
book).

• Note that for a characteristic equation of degree r,
we still have exactly r functions, so that there will be
one linear combination meeting the initial conditions.

Inhomogeneous Linears

• For example, consider a recurrence of degree
1, so that an = can-1 + f(n). The h-part is “can-1”
and the i-part is f(n).

• If we can find any function z such that zn =
czn-1 + f(n), then any function of the form an =
Acn + zn will satisfy the recurrence, and we can
use the initial conditions to find A as before.

• A special case is when c = 1, so that an = an-1 +
f(n). This has the solution zn = f(1) + … + f(n),
so that an = a0 + f(1) + f(2) + … + f(n).

Inhomogeneous Linears

• To solve an = can-1 + f(n) with c ≠ 1, we can use
some standard general solutions, that we will
justify with generating functions next lecture.

• If f(n) is a constant d, the particular solution is
another constant B.

• If f(n) = dn, we have B1n + B0 for two constants
B0 and B1.

• For f(n) = dn2 we have B2n2 + B1n + B0, and for
f(n) = edn we have Bdn.

Compound Inhomogeneous

• Example 3 in Section 7.4 has the recurrence an =
3an-1 - 4n + 3⋅2n, and asks for a general solution.

• The difficulty here is that the i-part is the sum of
two functions, but we can proceed by finding
particular solutions for each of the two
functions, and the adding them to A3n.

• To get yn = 3yn-1 - 4n, we look for a solution of
the form B1n + B0, and get 2n + 3 by taking the
equation B1n + B0 = 3(B1n + B0) - 4n and solving
for B0 and B1.

Compound Inhomogeneous

• Example 3 in Section 7.4 has the recurrence an =
3an-1 - 4n + 3⋅2n, and asks for a general solution.

• To get yn = 3yn-1 + 3(2n), we look for a solution
of the form B2n, and get 6(2n) by taking the
equation B2n = 3B2n-1 + 3(2n) and solving for B.

• Our general solution is an = A3n + 2n + 3 +
6(2n).

