COMPSCI 575/MATH 513 T Combinatorics and Graph Theory

Lecture #23: Recurrences (Tucker Sections 7.1 and 7.2 (with a bit of 6.5)) David Mix Barrington 4 November 2016

Recurrences

- Highlights of Section 6.5
- Some Common Recurrences
- Stairs and Fibonacci Numbers
- Some Examples
- Placing Parentheses
- Systems of Recurrences
- Divide and Conquer

Section 6.5 of Tucker

- I'm mostly skipping this section, but there are two tricks for generating functions we ought to take note of.
- If g(x) is the sum over r of a_rx^r, what happens when we take the derivative of g(x)? By the rules we learned in a calculus course, g'(x) is the sum over r of ra_rx^{r-1}. This makes xg'(x) the sum over r of ra_rx^r.

Section 6.5 of Tucker

- We've taken the GF for the sequence a₀, a₁, a₂,... and made a GF for the sequence 0, a₁, 2a₂, 3a₃,..., multiplying the entry a_r by r.
- Starting from the GF for 1,1,1,... which is 1(1-x), we can make GF's for any fixed polynomial in r by using this trick to get a GF for any desired fixed power rⁿ.

Section 6.5 of Tucker

- The other trick in this section is to take a GF for a₀, a₁, a₂,... and make a GF for s₀, s₁, s₂,..., where each s_r is the sum for i from 0 to r of a_i.
- All we need to do is take $g(x) = a_0 + a_1x + a_2x^2 + ...$ and divide it by I-x to get a new series h(x).
- Letting f(x) = 1/(1-x), our new h(x) = g(x)f(x), and each coefficient h_r is just the sum over all i from 0 to r of a_i times 1, since the x^{r-i} coefficient of f(x) is just 1.

What is a Recurrence?

- A recurrence is a definition of a sequence a₀, a₁, a₂,... where we define a₀ directly and define all other values a_r in terms of zero or more a_j's, where each j is less than r.
- By induction, each value a_r is properly defined. The base case of r=0 is given since a₀ is defined, and if we know all a_j for j < r, the definition gives us a value for a_{r.}

Some Common Recurrences

- A linear recurrence defines a_n as a linear function of the most recent a_j's. The general form is a_n = c₁a_{n-1} + c₂a_{n-2} + ... + c_ra_{n-r}. If r = I this is just a geometric series, with a_n = a₀(c₁)ⁿ. For larger r, we need r base cases a₀, ..., a_{r-1} rather than just a₀.
- The Fibonacci recurrence, defined by f₀ = 0,
 f₁ = 1, and f_n = f_{n-1} + f_{n-2} for n > 1, is an example of a linear recurrence with r = 2.

Some Common Recurrences

- A recurrence might include a fixed function of n as well as the previous values a_j. For example, we could have a_n = ca_{n-1} + f(n), for any function f.
- We could mix up the values, as in the recurrence $a_n = a_0a_{n-1} + a_1a_{n-2} + \ldots + a_{n-1}a_0$.
- Or we could define a two-dimensional recurrence, by a rule like a_{n,m} = a_{n-1,m} + a_{n-1,m-1}. (Recognize this one?)

Recurrences in General

- A recurrence fully defines a function, and may or may not give the most efficient way to compute an arbitrary value a_n.
- A closed form for a recurrence is a function of n only, not referring to other values of the sequence. We will see a number of general techniques for finding closed forms of recurrences, and for finding recurrences for functions given by closed forms.

Stairs and Fibonacci Numbers

- Suppose an elf is ascending a staircase of r steps, and in one jump it can move one or two steps. Define a_r to be the number of different ways it can reach the top.
- Clearly $a_0 = a_1 = I$, and $a_2 = 2$ as it could take the steps one by one or both at once.
- In general $a_r = a_{r-1} + a_{r-2}$, since the last jump must come from either step r-1 or step r-2.
- The sequence goes 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Example: Cutting Pizzas

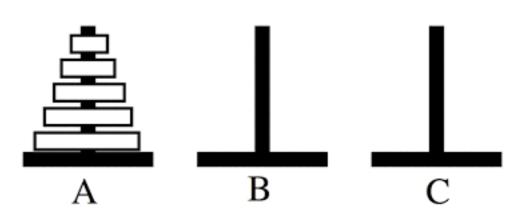
- In COMPSCI 250 we look at the following problem as an example of induction: What is the maximum number of pieces you can get from a convex pizza by n straight-line cuts?
- We can never do better than doubling the number, so a₀ = 1, a₁ = 2, and a₂ = 4 are clearly optimal. But eight pieces with three cuts doesn't appear possible (in the plane), so we need an argument to prove that a₃ = 7.

Example: Cutting Pizzas

- The nth straight cut can pass through at most n existing pieces, because it can cross each of the earlier cuts at most once.
- This gives us a rule that a_n ≤ a_{n-1} + n, and in fact a_n = a_{n-1} + n is achievable if the cuts are in general position.
- From the base case of $a_0 = 1$, we can solve this recurrence to get $a_n = (n^2+n+1)/2$.

Example: Tower of Hanoi

- In this puzzle we want to move the n disks from A to C, moving one disk at a time and never putting a larger disk on top of a smaller.
- There is a recursive solution that moves n disks by twice moving n-1 disks, and adding one more move. We get a recurrence $a_0 = 0$, $a_n = 2a_{n-1} + 1$, which solves to $a_n = 2^n - 1$.



Examples From Finance

- If we put \$1000 per year into a savings account that pays 2% annual interest, our balance after n years is given by the recurrence $a_0 = 0$, $a_n = (1.02)a_{n-1} + 1000$.
- If I borrow \$300,000 at 4% annual interest and pay back \$2000 per month, my balance is given by $a_0 = 300000$ and, for all n > 0, $a_n = (1+(0.04)/12)a_{n-1} - 2000$. Normally the monthly payment is chosen to make $a_n = 0$ when n is some fixed number of months.

Counting Revisited

- Our familiar counting functions can each be alternatively defined by recurrences:
- Sequences of length r from n choices: $a_0 = 1$, $a_r = na_{r-1}$.
- Permutations: P(n, n) = I, P(n, r) = nP(n-I, r-I).
- Combinations: C(n, 0) = C(n, n) = I, C(n, r) = C(n-I, r) + C(n-I, r-I), where the last equation follows from analyzing the cases of the first item being in or out of the set.

Messier Counting

- Suppose we put n identical balls into k distinct boxes, with between 2 and 4 balls per box. We can model this with a recurrence $a_{n,k} = a_{n-2,k-1} + a_{n-3,k-1} + a_{n-4,k-1}$ with the correct initial conditions. We also know how to solve this problem with generating functions.
- What if the balls come in three colors? Now we have a recurrence $a_{n,k} = 6a_{n-2,k-1} + 10a_{n-3,k-1} + 15a_{n-3,k-1}$ when we take into account the number of ways to fill boxes with 2, 3, or 4 balls.

Placing Parentheses

- If I have a product of n items, how many ways are there to parenthesize them as binary products? Let a_n be this number, so a₂ = I and a₃ = 2 for (x₁x₂)x₃ and x₁(x₂x₃).
- The general rule is that a_n is the sum, over all i, of $a_i a_{n-i}$. This is because the last of our multiplications must be between the product of the first i items and the product of the last n-i. (So we need to define a_1 , and the value that makes sense is $a_1 = 1$, along with $a_0 = 0$.)

Systems of Recurrences

- Sometimes we need more than one recurrence to solve a counting problem.
- Consider strings over {a,b,c} with an even number of b's and an odd number of c's.
- If f(n) is the number of such strings of length n, we have that f(n) = f(n-1) + g(n-1) + h(n-1), where g(n) is the number with odd numbers of both b's and c's, and h(n) the number with even numbers of each.

Systems of Recurrences

- Then g(n), for example, is g(n-1) + f(n-1) + i(n-1), where i(n) is the number with an even number of b's and an odd number of c's.
- Each of the four functions is defined by a recurrence using itself and two of the others.
- By induction on n, assuming we define f(0), g(0), h(0), and i(0) to each be 1, we have welldefined and correct values f(n), g(n), h(n), and i(n) for each n.

Divide and Conquer

- Many algorithms take a divide and conquer approach, reducing a problem to similar problems with smaller parameters. Much of COMPSCI 311 is spent analyzing the resources used by such algorithms, and recurrences are a key tool in this analysis.
- If a_n is the number of steps to solve a problem of size n, we often get a recurrence of the form $a_n = ca_{n/2} + f(n)$, where c is a constant and f(n) is the time to split and merge the subproblems.

Simple D&C Examples

- If c = I and f(n) is constant, we have a_n = a_{n/2}
 + d, which solves to a_n = dlog₂(n) + A, where
 A is a constant chosen to fit the initial
 conditions. We assume here that n is a
 power of 2, to avoid ceilings and floors.
- If c = 2 and f(n) is constant, we have $a_n = 2a_{n/2} + d$, which solves to $a_n = An d$. Our 3n/2 2 steps to find max and min fits into this case.
- If c = 2 and f(n) = dn, we have $a_n = 2a_{n/2} + dn$, which solves to $a_n = dn(log_2n + A)$.

Fast Multiplication

- Normally multiplying two n-bit numbers would require $O(n^2)$ bit multiplications.
- By adding some cheaper additions, though, we can do it with fewer multiplications.
- Write the numbers w₁ and w₂ as u₁v₁ and u₂v₂, where the u's and v's are n/2 bit numbers. Then w₁ × w₂ = (u₁×u₂)2ⁿ + [(u₁×v₂) +(v₁×u₂)]2^{n/2} + (v₁×v₂). We have four products of n/2-bit numbers.

Fast Multiplication

- $(u_1 \times u_2)2^n + [(u_1 \times v_2) + (v_1 \times u_2)]2^{n/2} + (v_1 \times v_2)$ has four products of n/2-bit numbers.
- But if we compute u₁×u₂, v₁×v₂, and (u₁+v₁) × (u₂+v₂), using only three multiplications, we can get all three terms we need by addition.
- Our number of multiplications satisfies the recurrence $a_n = 3a_{n/2}$, which turns out to solve to $a_n = n^{\log 3} = n^{1.585...}$, much better than n^2 . Of course there are complications like the time for the additions.

The CLRS Master Theorem

- In COMPSCI 311 we learn a theorem called the Master Theorem in the popular CLRS textbook. It gives a solution to the recurrence a_n = ca_{n/k} + f(n), which applies when we divide the size-n problem into c problems of size n/k each, with f(n) overhead to split the problems and merge the solutions.
- The solutions are given in big-O form, befitting a course where we usually regard resource bounds this way.

The CLRS Master Theorem

- We have $a_n = ca_{n/k} + f(n)$.
- The result depends on the relationship between f(n) and g(n) = n^{log c}, where the log is base k. The statement below is approximate.
- If f(n) = o(g(n)), then $a_n = \Theta(g(n))$.
- If $f(n) = \Theta(g(n))$, then $a_n = \Theta(g(n)\log n)$.
- If $f(n) = \omega(g(n))$, then $a_n = \Theta(f(n))$.