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A Motivating Problem

• Exercise 5.2.38 in Tucker (on HW#4) asks about 
ten people who order sandwiches at a deli.  Eight 
always order the same thing (four tuna, two roast 
beef, two chicked) and the other two vary their 
order between the three choices.

• Part (b) asks how different total sandwich orders 
are possible, and there are six: 6T2R2C, 5T3R2C, 
5T2R3C, 4T4R2C, 4T3R3C, and 4T2R4C.  This is 
C(2+3-1,2) because we choose a multiset of size 
2 from {T, R, C} for the variable orders.



A Motivating Problem

• But part (a) asks how many possible 
sequences of sandwiches, such as 
TTRRTCTCCT, are possible.  That is, how 
many total arrangements can be made of 
these six multisets?

• 6T2R2C has P(10; 6, 2, 2) = C(10, 6)C(4, 2) = 
1260, while 5T3R2C has P(10; 5, 3, 2) = C(10, 
5)C(5, 3) = 2520, as does 5T2R3C.  4T4R2C 
and 4T2R4C each have 3150, and 4T3R3C 
has 4200, for a total of 16800.



A Motivating Problem

• With GF’s, we can solve part (b) easily 
because the answer of 6 is the x10 coefficient 
of x4/(1-x) times x2/(1-x) times x2/(1-x), which 
is the x2 coefficient of 1/(1-x)3 or C(2+3-1, 2).

• But ordinary GF’s don’t appear to help us 
with part (a).  Each of the six terms x6x2x2, 
x5x2x3, x5x2x3, x4x4x2, x4x3x3, and x4x2x4 
contributes a different number of 
arrangements to the total number for the ten 
elements.



Defining Exponential GF’s

• This leads us to a new definition, for a new kind 
of GF for a sequence a0, a1, a2,… called an 
exponential generating function or EGF.

• The EGF for {ar} is a0/0! + a1x/1! + a2x2/2! + 
a3x3/3! +…, where we divide each xr term of 
the ordinary GF by r!.

• Thus the EGF for 1, 1, 1,… is 1 + x + x2/2 + 
x3/6 + x4/24 + …, which you may recognize as 
the Taylor expansion of the function ex.



EGF’s for the Sandwiches

• Let’s see what happens if instead of 
multiplying the GF’s for our three sandwich 
flavors, we multiply the EGF’s.

• The sequence of ways to have r tuna 
sandwiches is 0, 0, 0, 0, 1, 1, 1,…, and thus the 
EGF is x4/4! + x5/5! + x6/6! + …

• The other two EGF’s are both x2/2! + x3/3!/ + 
x4/4! + …



EGF’s for the Sandwiches

• Multiplying (x4/4!+x5/5!+…)(x2/2!+x3/3!+…)2 

gives us a power series whose x10 coefficient 
is 1/6!2!2! + 1/5!2!3! + 1/5!3!2! + 1/4!4!2! + 
1/4!3!3! + 1/4!2!4!.

• This new power series is the EGF for a 
sequence b0, b1, b2,… where b10 is exactly the 
sum of terms above, times 10!.  Hence this 
sum is exactly the sum of P(10; 6, 2, 2) and 
the permutation numbers from the other five 
partitions.



Exponential GF for P(n, r)

• Suppose now that we want an EGF for the 
number of length-r arrangements of n objects, 
without repetition.

• The ordinary GF is (1+x)n, since each object 
is there either 0 times or 1 time.  This is also 
the EGF for this sequence of choices, since 
dividing the terms by 0! or 1! has no effect.

• For what sequence of numbers is (1+x)n the 
EGF?  We have ar/r! = C(n, r), so ar = P(n, r).



Arranging Objects

• For another example, let’s have four types of 
objects and pick from two to five of each type.

• The EGF for each type is (x2/2!+x3/3!+x4/4!+x5/5!), 
so the entire EGF is (x2/2!+…+x5/5!)4.

• If we view this as the EGF for a1,a2,…, then ar is 
the sum of terms of the form r!/e1!e2!e3!e4! for all 
sums of the form e1+e2+e3+e4 = r.

• And this is exactly the number of arrangements of 
r objects chosen from the four types in this way.



Relating Exponential GF’s to ex

• Unfortunately, EGF’s are much more difficult 
to compute with than ordinary GF’s.

• We have the Taylor series for ex, and more 
generally enx = 1+nx+n2x2/2!+… is the EGF 
for the sequence 1, n, n2,…

• But given, say, x2/2!+x3/3!+x4/4!+…, we can’t 
factor out an x2 as we did with the ordinary 
GF.  The best we can do for this EGF is to 
write it as ex - 1 - x.



Even and Odd Terms

• There are two more useful identities for EGF’s.  
We know that ex can be written as 1+x+x2/2!
+x3/3!+…, and e-x as 1-x+x2/2!-x3/3!+…

• This gives us that (ex+e-x)/2 = 1+x2/2!+x4/4!+… 
and that (ex-e-x)/2 = x+x3/3!+x5/5!+…

• (These might remind you of the Taylor series 
for trigonometric functions, which we’d get by 
plugging in some i’s here and there.) 



More Examples

• Here’s an easy example first.  Let’s use EGF’s 
to solve our first counting problem, the 
number of ways to choose r objects from n 
types with unlimited repetition.

• The EGF for a single type is just ex = 1+x
+x2/2!+…, so the EGF for n types is the 
product (ex)n = enx = 1+nx+n2x2/2!+…, and 
this is just the EGF for the sequence 1, n, n2,…

• Our answer is thus just the familiar nr.



More Examples
• Now let’s put 25 distinct people into three 

distinct rooms, with at least one person in each 
room. 

• The EGF for each room is x+x2/2!+x3/3!+…, 
which is also ex-1, so the total EGF is (ex-1)3 = 
e3x - 3e2x + 3ex - 1.

• The x25 coefficient of e3x is 325/25!.  The x25 
coefficient of -3e2x is -3(225)/25!.  That of 3ex is 
just 3/25!, and that of 1 is just 0.  So our final 
answer, 25! times the coefficient, is 325 - 3(225) + 
3.  Can you explain this answer combinatorially?



More Examples

• Now let’s look at strings of length r over {a, b, 
c, d} with an even number of a’s and an odd 
number of b’s.

• The EGF is (1+x2/2+…)(x+x3/3!+…)(1+x
+x2/2)2, which by our identities is (ex+e-x)/2 
times (ex-e-x)/2 times e2x.

• This is (1/4)(e2x-e-2x)e2x = (e4x-1)/4.  That 
makes the number of strings of length r 
equal to 4r/4 = 4r-1.  Can you explain this?



Stirling Numbers Again

• Remember that we earlier looked at the 
number of ways to put r distinct objects into 
n distinct boxes with at least one in each box.

• The EGF for each box is ex-1, so our overall 
EGF is (ex-1)n.  For any fixed n, we can expand 
this to the sum over k of (-1)n-kC(n, k)ekx

• This makes the number sn,r of arrangements 
equal to the sum over all k of (-1)n-kC(n, k)kr, 
since ekx is the sum over r of kr/r!.



Stirling Numbers Again

• This quantity sn,r is the number of maps of r 
distinct objects into n distinct boxes.  

• The Stirling number of the second kind is the 
number of maps into identical boxes, which is 
just sn,r/n!, which we earlier called S(n, r).

• We’ll see the Stirling numbers of the first 
kind later.  There s(n, r) is the number of 
permutations of n elements that have r orbits 
of elements.  (This isn’t what we just called 
sn,r, but there are only so many letters…)


