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A Motivating Problem

® Exercise 5.2.38 in Tucker (on HW#4) asks about
ten people who order sandwiches at a deli. Eight
always order the same thing (four tuna, two roast
beef, two chicked) and the other two vary their
order between the three choices.

® Part (b) asks how different total sandwich orders
are possible, and there are six: 6T2R2C, 5T3R2C,
5T2R3C,4T4R2C,4T3R3C,and 4T2R4C. This is
C(2+3-1,2) because we choose a multiset of size
2 from {T, R, C} for the variable orders.



A Motivating Problem

® But part (a) asks how many possible
sequences of sandwiches, such as
TTRRTCTCCT, are possible. That is, how
many total arrangements can be made of
these six multisets?

® 6T2R2C has P(10;6,2,2) = C(10,6)C(4,2) =
1260, while 5T3R2C has P(10;5, 3,2) = C(I0,
5)C(5, 3) = 2520, as does 5T2R3C. 4T4R2C
and 4T2R4C each have 3150,and 4T3R3C
has 4200, for a total of |6800.



A Motivating Problem

® With GF’s, we can solve part (b) easily
because the answer of 6 is the x'? coefficient
of x#/(1-x) times x?/(1-x) times x?/(1-x), which
is the x? coefficient of 1/(1-x)3 or C(2+3-1, 2).

® But ordinary GF’s don’t appear to help us
with part (a). Each of the six terms x®x?x?,
X533, x2x23, X2, xhx3x3, and xtx2x*
contributes a different number of
arrangements to the total number for the ten

elements.



Defining Exponential GF’s

® This leads us to a new definition, for a new kind
of GF for a sequence ag, aj, az,... called an

exponential generating function or EGF.

® The EGF for {a,} is ao/0! + a;x/I! + axx?/2! +
a3x3/3! +..., where we divide each x" term of
the ordinary GF by r!.

® Thus the EGFfor I, I, 1,...0is | + x + x%/2 +
x3/6 + x*24 + ..., which you may recognize as
the Taylor expansion of the function e*.



EGF’s for the Sandwiches

® | et’s see what happens if instead of
multiplying the GF’s for our three sandwich
flavors, we multiply the EGF’s.

® The sequence of ways to have r tuna
sandwiches is 0,0,0,0, I, I, 1,...,and thus the
EGF is x*/4! + x°/5! + x®/6! + ...

® The other two EGF’s are both x2/2! + x3/3!/ +
x4 + ...



EGF’s for the Sandwiches

® Multiplying (x*/4!+x>/5!+...)(x?/2!1+x3/3!+...)?
gives us a power series whose x'? coefficient
is [/6!1212) + |/51213! + 1/51312! + [/41412! +
1/41313! + 1/412!4).

® This new power series is the EGF for a
sequence bo, by, by,... where bjo is exactly the
sum of terms above, times 10!. Hence this
sum is exactly the sum of P(10;6, 2, 2) and
the permutation numbers from the other five
partitions.



Exponential GF for P(n, r)

® Suppose now that we want an EGF for the
number of length-r arrangements of n objects,
without repetition.

® The ordinary GF is (I +x)", since each object
is there either O times or | time. This is also
the EGF for this sequence of choices, since
dividing the terms by 0! or |! has no effect.

® For what sequence of numbers is (| +x)" the
EGF!? We have a,//r! = C(n,r),so ar = P(n, r).



Arranging Objects

For another example, let’s have four types of
objects and pick from two to five of each type.

The EGF for each type is (x%/2!+x3/3!+x%/4!+x>/5!),
so the entire EGF is (x?/2!+...+x>/5!)%.

If we view this as the EGF for aj,as,..., then ar is
the sum of terms of the form r!/e|!ej!es3!le4! for all
sums of the form e|+eytes3tes = .

And this is exactly the number of arrangements of
r objects chosen from the four types in this way.



Relating Exponential GF’s to e*

® Unfortunately, EGF’s are much more difficult
to compute with than ordinary GF’s.

® We have the Taylor series for e*,and more
generally e™ = |+nx+n?x?/2!+... is the EGF
for the sequence I, n, n?,...

® But given, say, x?/2!+x3/3!+x*%/4!+ ..., we can’t

factor out an x? as we did with the ordinary
GF The best we can do for this EGF is to
write itas e* - | - x.



Even and Odd Terms

® There are two more useful identities for EGF’s.
We know that eX can be written as | +x+x2/2!
+x3/31+...,and e> as |-x+x2/21-x3/3!+. ..

® This gives us that (eX+eX)/2 = |+x2/2!+x%/4!+. ..
and that (eX-eX)/2 = x+x3/3!+x>/5!+. ..

® (These might remind you of the Taylor series
for trigonometric functions, which we'd get by
plugging in some i’s here and there.)



More Examples

® Here’s an easy example first. Let’s use EGF’s
to solve our first counting problem, the
number of ways to choose r objects from n
types with unlimited repetition.

® The EGF for a single type is just e = |+x
+x?/2!+..., so the EGF for n types is the
product (eX)" = e™ = |+nx+n2x?%/2!+...,and
this is just the EGF for the sequence |, n, n?,...

® Our answer is thus just the familiar n".



More Examples

® Now let’s put 25 distinct people into three
distinct rooms, with at least one person in each
room.

® The EGF for each room is x+x2/2!+x3/3!+.. .,
which is also e*-1, so the total EGF is (e*-1)3 =
e3x - 3e2X + 3ex - |,

® The x? coefficient of 3% is 32°/25!. The x*
coefficient of -3e?* is -3(22°)/25!. That of 3eXis
just 3/25!,and that of | is just 0. So our final
answer, 25! times the coefficient, is 3% - 3(22°) +
3. Can you explain this answer combinatorially?



More Examples

® Now let’s look at strings of length r over {a, b,
c, d} with an even number of a’s and an odd

number of b’s.

o The EGF is (1+x2/2+...)(x*+x3/3!+...) (1 +x
+x?/2)2, which by our identities is (e*+e™)/2
times (e*-e™)/2 times e*.

® This is (1/4)(e*-e>)e* = (e™-1)/4. That
makes the number of strings of length r
equal to 4/4 = 4~'. Can you explain this?



Stirling Numbers Again

® Remember that we earlier looked at the
number of ways to put r distinct objects into
n distinct boxes with at least one in each box.

® [he EGF for each box is e*-|, so our overall
EGF is (e*-1)". For any fixed n, we can expand
this to the sum over k of (-1)"*C(n, k)e*

® This makes the number s, of arrangements
equal to the sum over all k of (-1)"C(n, k)k,
since e is the sum over r of k'/r!.



Stirling Numbers Again

® This quantity snr is the number of maps of r
distinct objects into n distinct boxes.

® The Stirling number of the second kind is the
number of maps into identical boxes, which is
just snr/n!, which we earlier called S(n, r).

® We'll see the Stirling numbers of the first
kind later. There s(n, r) is the number of
permutations of n elements that have r orbits
of elements. (This isn’t what we just called
sn,r, bUt there are only so many letters...)



