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Defining Partitions

• A partition of a set S is a collection of pairwise 
disjoint subsets that union to S.  

• Similarly, a partition of a non-negative integer r 
is a collection of positive integers that sum to r.

• Equivalently, a partition of r is a mapping from r 
identical objects into some number k of identical 
boxes.

• We’ll let pk(r) be the number of partitions into k 
boxes, and p(r) be the total number of partitions.



Partition Examples

• We can represent a partition by a sum where 
the terms are in non-decreasing order.

• Of course 0 has one partition the empty one, 
and 1 can only be divided into itself.

• 2 can be 1+1 or 2, and 3 can be 1+1+1, 1+2, 
or 3.  4 can be 1+1+1+1, 1+1+2, 1+3, 2+2, or 
4, and 5 can be 1+1+1+1+1, 1+1+1+2, 1+1+3, 
1+2+2, 1+4, 2+3, or 5.  Note that the latter 
list is the set of poker hands, except for 
straights and flushes.



Partition Examples

• Here are some values of pn(r) and p(r).

• The 4 for p3(7) counts 115, 124, 133, and 233.

  r   1  2  3  4  5  6  7 
p1(r) 1  1  1  1  1  1  1 
p2(r) 0  1  1  2  2  3  3 
p3(r) 0  0  1  1  2  3  4 
p4(r) 0  0  0  1  1  2  3 
p5(r) 0  0  0  0  1  1  2 
p6(r) 0  0  0  0  0  1  1 
p7(r) 0  0  0  0  0  0  1 
p(r)  1  2  3  5  7 11 15



GF for the Partition Numbers

• The partition numbers don’t appear to obey 
any rule that can be characterized by a 
formula, though they have been calculated for 
rather large r (p(10000) has 107 digits).

• But we can express the entire function p(r) 
by a GF.  We can characterize a partition by 
how many 1’s, 2’s, 3’s, etc. it has.  If ek is the 
number of k’s, we have that e1 + 2e2 + 3e3 +
… + rer = r.  We are picking r objects in the 
form of e1 singletons, e2 pairs, e3 triplets, etc.



GF for the Partition Numbers

• Look at the function (1+x+x2+x3+…) times 
(1+x2+x4+x6+…) times (1+x3+x6+x9+…) and 
so on, all the way out to (1+xr+x2r+x3r+…).

• There will be one term in this product for 
every choice of e1,…, er, and the degree of 
that term will be e1+e2+…+er.

• So the GF for the entire partition number, 
with any value of r, is 1/(1-x)(1-x2)(1-x3)…, a 
product of infinitely many power series.



Wait—Infinite Products?

• But can we even do that?  We showed last 
time that any finite product of power series 
with integer coefficients is itself a series with 
integer coefficients.  But is this true for infinite 
products?

• Clearly it’s not always the case.  If I multiply 
together an infinite number of copies of the 
series 1/(1-x) = 1+x+x2+…, I get an infinite 
number of linear terms by taking one x and 
taking 1’s in all the other series.



Wait—Infinite Products?

• If f1, f2, f3,… are a sequence of power series, I  
can define gn to be the product of the first n 
series in the sequence.  These series gn all 
definitely exist, but our question is whether 
they converge to a single series that could 
be defined as our infinite product.

• Convergence requires a metric, or at least a 
topology, on the space of all power series.  
We can take the length of f to be 2-k, where k 
is the number of 0 terms at the start of f.



Wait—Infinite Products?

• The sequence of gn’s converges to h if for any 
positive real number δ, the length of h - gn is 
less than δ for sufficiently large n.  With our 
metric, this means that for any k, h agrees 
with gn on the first k terms for sufficiently 
large n.

• For the product we’re considering, we get 
each gn+1 by multiplying gn by 1+xn+1+…, 
which adds only terms of degree at least n+1.

• So we will have convergence in this case. 



Is This Useful at All?

• You will notice that Tucker gives no examples 
of computing partition numbers from the 
generating function.  

• That’s because, I think, it would be tedious for 
hand calculation.  If we wanted the xr 
coefficient of the GF, we could calculate it 
even though it is an infinite product, because 
only the terms 1(1-x), 1/(1-x2),…, 1/(1-xr) 
would affect the coefficient we want.

• We could do this in time polynomial in r.



Partitions Into Distinct Integers

• What we can do is mimic the derivation of 
this GF to get GF’s for similar problems.

• What about the number of ways to write r as 
a sum of distinct integers?

• We truncate each term 1+xk+x2k+… to just 
1+xk, so that our GF is the infinite product 
(1+x)(1+x2)(1+x3)(1+x4)…

• The product starts out 1+x+x2+2x3+2x4+3x5: 
the sums for r=5 are 1+4, 2+3, and 5.



Choosing Stamps

• How many ways are there to make up r cents 
from 2-cent, 3-cent, and 5-cent stamps?

• The GF for this problem is just (1+x2+x4+…)
(1+x3+x6+…)(1+x5+x10+…), or equivalently 
1/(1-x2)(1-x3)(1-x5).

• To find the xr coefficient, we can multiply the 
three polynomials we get by truncating the 
series to the first r+1 terms.



Integers as Powers of Two

• Of course we know that every positive 
integer can be written in a unique way as a 
sum of distinct powers of two.  This is easy to 
prove by induction, but we can get an 
interesting alternate proof using generating 
functions.

• Just as in the problem before last, the GF for 
the number of ways to write r as a sum of 
distinct powers of two is just (1+x)(1+x2)
(1+x4)(1+x8)…, an infinite product.



Distinct Powers of Two

• Let g(x) be this product (1+x)(1+x2)(1+x4)…

• If we compute (1-x)g(x), we can multiply the 
first two terms to get 1-x2, then multiply that 
by the next term to get 1-x4, then multiply that 
by 1+x4 to get 1-x8, and so forth.

• The claim is that this infinite product is exactly 
1.  How do we argue that?  We show that the 
partial products converge to 1, because each 
one differs from 1 by a “smaller” series, one 
with higher-degree terms.



Distinct Powers of Two

• If we believe that (1-x)g(x) = 1, it follows that 
g(x) = 1/(1-x) = 1+x+x2+…, and thus that the 
number of ways to write any r as a sum of 
distinct powers of two is exactly 1.

• Tucker is pretty casual about the “…” in the 
infinite product, but thinking of the infinite 
product as the limit of its partial products (if 
that limit exists) takes care of the problem.



Ferrers and Young Diagrams

• A Ferrers diagram 
for a partition has a 
row of dots for each 
piece, in descending 
order of size.

• A Young diagram is 
similar, with squares 
instead of dots. Young diagram for 5+3+1+1



Ferrers and Young Diagrams

• Given any Ferrers diagram, we can form its 
conjugate by transposing the rows and columns 
to get a different partition of the same number.

• In this way partitions of r into exactly k pieces 
are in 1-1 correspondence with partitions 
whose largest piece is size exactly k.


