
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #20:  Calculating Coefficients of GF's
(Tucker Section 6.2)
David Mix Barrington
28 October 2016



Calculating Coefficients of GF’s

• Multiplying Power Series

• Division, and Two Identities

• Binomial Theorem Identities

• Powers of 1/(1-x)

• Finding One Coefficient

• Some Easy Counting Problems

• A Harder Counting Problem

• Verifying an Identity



Multiplying Power Series

• As we saw last time, we can take two power 
series a0+a1x+a2x2+… and b0+b1x+b2x2+… 
and get a product c0+c1x+c2x2+…, by the rule 
that cn is the sum for i from 0 to n of aibn-i.

• This means that any finite product of power 
series is defined as a power series.  If the 
factors have integer coefficients, so does the 
product.

• When can we divide power series?



Dividing Power Series

• If f, g, and h are power series and we know 
that fg = h, it’s legitimate to say that g = h/f or 
f = h/g.

• In many cases we can take h and f and 
compute h/f by long division.  (This may or 
may not keep us within integer coefficients.)

• In particular, suppose h is the GF for the 
sequence ai and f the GF for bi.  We can 
compute h/f if b0 = 1.



Dividing Power Series

• For example, let ai = 1 for all i and let f = 
1+2x.  We can subtract f from h to get the 
series -x+x2+x3+…, then subtract -xf to get 
3x2+x3+x4+…, and so on.

• Carrying out this process gives us a quotient 
of 1-x+3x2-5x3+11x4-21x5+43x6-…, and 
multiplying back together verifies this fact.  
But we’d rather have an analytic answer than 
just a sequence of coefficients.



Two Division Identities

• It turns out that dividing by 1-x gives us 
particular power series that are useful in 
combinatorics.

• It’s easy to verify that (1-x)(1+x+x2+…) = 1, 
which means that 1/(1-x) is (1+x+x2+…), the 
GF for the sequence with ar = 1 for all r.

• And (1-xk+1)/(1-x) is also easily verified to be 
1+x+x2+…+xk, a series that came up several 
times last lecture.



Binomial Theorem Identities

• We also noted a number of identities that 
come from the Binomial Theorem.

• (1+x)n = C(n, 0) + C(n, 1)x + … + C(n, n)xn.

• (1-x)n = C(n, 0) - C(n, 1)x + C(n, 2)x2 - … + 
(-1)nC(n, n)xn.

• (1-xm)n = C(n, 0) - C(n, 1)xm + C(n, 2)x2m - 
C(n, 3)x3m +…+(-1)nC(n, n)xnm.



Powers of 1/(1-x)

• Let’s now look at what happens when we 
multiply 1/(1-x) by itself.

• (1+x+x2+…)(1+x+x2+…) has one term of 
degree 0, two of degree 1, three of degree 2, 
and so forth, so that 1/(1-x)2 = 1+2x
+3x2+4x3+…

• What about 1/(1-x)k?  We get a term of 
degree r for every possible sum e1+…+ek = r, 
and we know there are C(r+k-1, r) of those.



Powers of 1/(1-x)

• With k=2, C(r+1-1, r) is just r+1, so as we 
just saw, 1/(1-x)2 = 1+2x+3x2+4x3+…

• With k=3, we have C(r+2, r) as our general 
term, for 1+3x+6x2+10x3+…

• With k=4 we have C(r+3, 3) which gives us 
1+4x+10x2+20x3+35x4+…

• The point is that we can easily get any 
coefficient of any power of 1/(1-x).



Finding One Coefficient

• Let’s now start in on Tucker’s examples of 
coefficient calculations, applying the tools we 
have built up.

• What is the coefficient of x16 in the series 
(x2+x3+x4+x5+…)5?  We rewrite the series in 
parentheses as x2/(1-x), so our series is x10/
(1-x)5.  Thus we want the coefficient of x6 in 
(1-x)5, which is just C(6+5-1, 6) = C(10, 4) = 
10×9×8×7/1×2×3×4 = 10×3×7 = 210.



Finding One Coefficient

• The coefficient we just calculated is the 
number of ways to select 16 objects with 
repetition from 5 types, with at least two 
from each type.

• We could have solved that problem by 
assigning two objects to each type and then 
counting the ways to select the other six.  But 
the GF computation applied this “trick” for 
us, using only our normal intuition about 
polynomials.



Some Easy Counting Problems

• Let’s say that we now want to collect $15 
from 20 distinct people.  The first 19 people 
can give $1 or nothing, and the last person 
can give $1, $5, or nothing.  How many ways?

• It should be clear by now that we want the 
coefficient of x15 in (1+x)19(1+x+x5).

• Let the xr coefficient in (1+x)19 be ar, and let 
the xr coefficient in (1+x+x5) be br.  We want 
the x15 coefficient in the product.



Some Easy Counting Problems 

• The x15 coefficient is the sum over all r of 
arb15-r, which by the nature of the b’s is just 
a10 + a14 + a15, since most of the b’s are 0.

• This is just C(19, 10) + C(19, 14) + C(19, 15).

• Again a breakdown into three cases based on 
the last person’s gift would have gotten us 
this solution pretty quickly.  But the 
generating function made this case analysis 
somewhat more automatic.



Some Easy Counting Problems

• How many ways are there to distribute 25 
identical balls into seven distinct boxes, if box 
1 has no more than 10 balls but the other 
boxes may have any number?

• The GF for this problem is (1+x+…+x10)(1+x
+x2+…)6 = (1-x11)/(1-x) times 1/(1-x)6, 
which we may write as (1-x11)/(1-x)7.

• The x25 coefficient of the product of 1-x11 
and 1/(1-x)7 is a sum of terms for i from 0 
to 25, but most of those terms are 0.



Some Easy Counting Problems

• If we write 1/(1-x)7 as the sum of brxr, the x25 
coefficient of the product is b25 - b14, which is 
C(31, 25) - C(20, 14).

• Again there is a combinatorial interpretation.  
C(31, 25) is the number of ways to put 25 
identical balls into seven distinct boxes, and 
C(20, 14) is the number of these distributions 
that have 11 or more balls in the first box.



A Harder Counting Problem

• Here is a problem that would be much more 
complicated without GF’s, if we could manage 
it at all.

• How many ways are there to select 25 toys 
from seven types of toys, with between two 
and six of each type?

• The GF we want is (x2+…+x6)7, and we again 
want the x25 coefficient.  This polynomial can 
be rewritten as x14(1+…+x4)7.



A Harder Counting Problem

• Of course the x25 coefficient in x14(1+…+x4)7 
is the x11 coefficient in (1-x5)7/(1-x)7.  

• Writing this as f(x)g(x), we then have that f(x) 
= 1 - C(7, 1)x5 + C(7, 2)x10 - C(7, 3)x15 + … - 
C(7, 7)x35.  And g(x) is 1 + C(7, 1)x + C(8, 
2)x2 + C(9, 3)x3 +…+ C(r+6, r)xr+…

• Fortunately, only the first three terms of f(x) 
can contribute to the x11 coefficient.  By the 
product rule we have C(7, 0)C(17, 11) - C(7, 
1)C(12, 6) + C(7, 2) C(7, 1).



A Harder Counting Problem
• How would we have gotten C(7, 0)C(17, 11) - 

C(7, 1)C(12, 6) + C(7, 2)C(7, 1) by purely 
combinatorial reasoning?

• We start by taking two toys of each type and 
seeing how to distribute the other 11.  C(17, 
11) is the number of ways to do this with the 
restriction.  C(7, 1)C(12, 6) is the number of 
ways to put five more of the 11 in one of the 
types, then distribute the other 6 arbitrarily.  

• But this double counts a few cases where 
two types get 7 or more toys. 



Verifying an Identity

• Tucker’s final example in this section is to 
verify one of our binomial coefficient 
identities.

• We saw that C(2n, n) = C(n, 0)2 + C(n, 1)2 + 
… C(n, n)2, as we proved by block-walking.

• Let’s look at the equation (1+x)2n = (1+x)n × 
(1+x)n.  The coefficient of xn in the LHS is 
clearly C(2n, n).  We can use our product rule 
to get the coefficient of xn in the RHS.



Verifying an Identity

• The coefficient of xn in a product is the sum, for 
all i, of the coefficient of xi in the first factor 
times the coefficient of xn-i in the second.

• This gives us C(n, 0)C(n, n) + C(n, 1)C(n, n-1) + 
C(n, 2)C(n, n-2) + … + C(n, n)C(n, 0).

• Since C(n, k) = C(n, n-k) for any k, we can rewrite 
this as C(n, 0)2 + … + C(n, n)2, giving us the RHS 
of our desired identity for C(2n, n).

• Using the GF pretty much duplicates the 
reasoning from the block-walking proof.


