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Binomial Coefficient Identities

• Today we will be working almost entirely with 
binomial coefficients, the answers to one of 
our basic combinatorial problems.

• The number C(n, r), also called “n choose r”, 
is the number of r-element subsets of an n-
element set.  It is also the number of binary 
strings with r 0’s and n-r 1’s.

• The usual notation for C(n, r) has the n above 
the r inside parentheses, but that is hard to 
create with this editor so I’ll use “C(n, r)”.



The Binomial Theorem

• Binomial coefficients get their name from the 
Binomial Theorem, which says that (x+y)n is 
equal to the sum, for i from 0 to n, of the 
term C(n, i)xiyn-i.

• Raising x+y to the nth power gives us a sum 
of 2n terms, one for every string of x’s and y’s 
of length n.  If we collect the terms with i x’s 
and n-1 y’s, we get exactly C(n, i) of them.

• We can also prove the Binomial Theorem by 
induction, once we have Pascal’s Identity.



The Two Biggest Identities

• It is easy to prove that C(n, k) = C(n, n-k), from 
either the string or subset points of view.  We 
can swap 0’s and 1’s in the binary strings, or pair 
each subset with its complement.

• Pascal’s Identity says that C(n, k) = C(n-1, k) + 
C(n-1, k-1).  Again a combinatorial proof is easy: 
look at forming a string with k 0’s and n-k 1’s by 
appending a letter, or at forming a size-k subset 
of an n-element set by adding an element to an 
n-1 element set.



Pascal’s Triangle

It is convenient to represent the 
values of C(n, k) in a triangular table, 
which is symmetric and in which each 
entry is the sum of the two above it.



Paths in Manhattan

• Shortest paths from (0, 0) to (x, y) in a 
Manhattan grid can be represented by 
sequences of N’s and E’s, with x E’s and y N’s.  
Clearly there are C(x+y, y) of these, and so 
exactly that many paths.

• We can prove Pascal’s Identity again by noting 
that any path to (n-k, k) must pass through (n-
k-1, k-1) or (n-k-1, k) but not both.  So the C(n, 
k) paths to (n-k, k) are in bijection with the 
union of sets of C(n-1, k-1) and C(n-1, k) paths.



Seven More Identities

• C(n, 0) + … + C(n, n) = 2n

• C(n, 0) + C(n+1, 1) + … + C(n+r, r) = C(n+r+1, r)

• C(r, r) + C(r+1, r) + … + (n, r) = C(n+1, r+1)

• C(n, 0)2 + C(n, 1)2 + … + C(n, n)2 = C(2n, n)

• Sum k=0 to r of C(m, k)C(n, r-k) = C(m+n, r)

• Sum k=0 to m of C(m, k)C(n, r+k) = C(m+n, m+r)

• Sum k=n-s to m-r of C(m-k, r)C(n+k, s) =                
C(m+n+1, r+s+1)



Some Proofs

• All of these identities are easy to prove by 
counting Manhattan paths.

• C(r, r) + C(r+1, r) + … + (n, r) = C(n+1, r+1)

• A path from (0, 0) to (n-r, r+1) must at some 
point go from (k, r) to (k, r+1) for some k.  
There are exactly C(r+k, r) ways to get to 
the point (k, r), and then exactly one way to 
get from there through (k, r+1) to (n-r, r+1).



Some Proofs

• C(n, 0)2 + C(n, 1)2 + … + C(n, n)2 = C(2n, n)

• We look at all the paths from (0, 0) to (n, n). 
Each one must pass through exactly one of 
the points (0, n), (1, n-1), (2, n-2),…, (n, 0).  
There are C(n, k) ways to get from (0, 0) to 
(k, n-k), and then C(n, n-k) = C(n, k) ways to 
get from there to (n, n).

• By counting the same set of C(2n, n) paths in 
two ways, we get the identity.



One More Proof

• Sum k=0 to m of C(m, k)C(n, r+k) = C(m+n, m+r)

• C(m+n, m+r) is the number of paths from (0, 0) to 
(n-r, m+r).  Any such path must cross the row of 
points from (m, 0) to (0, m) in exactly one place.  

• If this point is (k, m-k), there are exactly C(m, k) 
ways to get there from (0, 0), and then C(n, r+k) 
ways to get from there to (n-r, m+r).
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Attacking a Sum

• Let’s use binomial identities to evaluate the 
sum 1⋅2⋅3 + 2⋅3⋅4 + … + (n-2)(n-1)n.

• We can first rewrite this as P(3, 3) + P(4, 3) + 
… + P(n, 3).

• Since P(k, 3) = 3!C(k, 3) for any k, our sum is 
also 3![C(3, 3) + C(4, 3) + … + C(n, 3)].

• And by one of our identities, this is the same 
as 3!C(n+1, 4) = P(n+1, 4)/4.

• Note the similarity to the integral of n3 as n4/4.



Attacking Another Sum

• We can use this approach and one more trick 
to prove a closed form for 12 + 22 + … + n2.

• k2 = P(k, 2) + k, so this sum is [P(1, 2) + P(2, 2) 
+ … + P(n, 2)] + [1 + 2 + … + n].

• By a similar argument to the last one, the first 
sum is 2!C(n+1, 3), and the second is C(n+1, 2).

• This is (n+1)n(n-1)/3 + (n+1)n/2 =                   
(n+1)n[(2n-2) + 3]/6 = n(n+1)(2n+1)/6.  



Proofs by Substitution

• If we use the Binomial Theorem to compute 
(1+1)n, we get C(n, 0) + C(n, 1) + … + C(n, n) 
because all the powers of 1 go away.  This gets 
one of our earlier identities, for 2n.

• Similarly, expanding (1-1)n gives us 0 = C(n, 0) 
- C(n, 1) + C(n, 2) - … + (-1)nC(n, n).  This 
tells us that the odd-numbered C(n, i) and the 
even-numbered C(n, i) each add to 2n-1, since 
they are equal to one another.



Proofs by Substitution

• For one more of these, let’s look at n(1+1)n-1.

• This is the sum for i=0 to n-1 of nC(n-1, i) 
which is the sum of kC(n, k) because C(n, k) 
= (n/k)C(n-1, k-1) and we can take i to be 
k-1.

• Thus we get the identity 1⋅C(n, 1) + 2C(n, 2) 
+ … + nC(n, n) = n2n.


