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Distributions

• Objects in Boxes

• Unlimited Repetition: All Functions

• No Repetition: One-to-One Functions

• Restricted Repetition

• Counting Onto Functions

• The Twelvefold Way



Objects in Boxes

• Today we’re going to look at a new 
framework to describe our basic counting 
problems, that of distributions.

• The general picture is that we have r objects 
that we are going to place into n boxes.  We 
are thus choosing a function f: O → B, where 
O has size r and B has size n.

• But there are multiple versions of the 
problem of counting these functions, 
depending on our definitions. 



Objects in Boxes

• Suppose the objects in O are labeled with the 
numbers 1,…,r.  (They are distinct.)  Then if 
we put object 1 in box f(1), 2 in f(2), and so 
forth, our function is defined by the sequence 
of numbers f(1)f(2)…f(r).

• But if the objects are identical, then each of 
our functions is characterized by just the 
number of objects we put in each box.



Examples of Objects in Boxes

• Suppose we have 100 diplomats who must each be 
assigned to one of five continents. If the diplomats 
are distinct, there are 5100 ways to do this.  

• If we further insist that there be 20 diplomats 
assigned to each continent, we can consider that 
the 100 diplomats are being mapped into 100 
positions by a bijection, in one of 100! ways, and 
then correct for the over counting to get 100!/
(20!)5, which Tucker also writes as P(100; 20, 20, 20, 
20, 20).



Examples of Objects in Boxes

• In bridge, the 52 cards are dealt 13 to each 
player.  There are P(52; 13, 13, 13, 13) ways to 
divide the cards into four distinct hands.

• What’s the probability that West gets all 13 
spades?  We could calculate this as P(39; 13, 
13, 13)/P(52; 13, 13, 13, 13), but it is easier to 
see that West gets a uniform random subset 
of 13 cards, so one particular subset occurs 
with probability 1/C(52, 13).



With Repetition: All Functions

• If we map distinct objects into the boxes, we 
are choosing one of the nr functions from O 
to B, or equivalently one of the nr sequences 
of r elements of B.

• On the other hand, when we map identical 
objects into the boxes, we are choosing a 
multiset of size n, whose elements are the 
boxes, with one member for each element 
mapped into the box.  As we have seen, there 
are C(n+r-1, r) of these multisets.



Integer Solutions

• There is an important alternate characterization 
of the number of multisets of size r with 
elements taken from B.

• Each such multiset is a solution to the equation 
x1 + …+ xn = r, where each of the xi’s is a non-
negative integer.  Here xi represents the number 
of objects in the ith box.

• We often need to convert from counting 
multisets to number of integer solutions to 
number of distributions of identical elements.



No Repetition: Injections

• If we are not allowed to map more than one 
copy of the same object into a box, we are 
choosing an injection (a one-to-one 
function) from the objects to the boxes.

• With distinct objects, there are P(n, r) of 
these mappings, one for each sequence of 
objects with no repeats.  Of course this 
number is 0 if r > n, since no such sequence 
exists in that case.



No Repetition: Injections

• If we map r identical objects into the n boxes, 
the only question is which subset of r boxes 
receive objects.  There are C(n, r) such 
subsets, and C(n, r) is also 0 if r > n.

• If we represent these subsets as strings, we 
need a bit to represent the presence or 
absence of an object in each box.  This gives 
us a binary string of length n, with exactly r 
ones and n-r zeros.



Restricted Repetition

• If we think of elements of O as types of 
objects rather than just objects, we are 
allowed one object of each type in the no-
repetition case and an unlimited number in 
the general case.

• If we have a specific number ki of each 
distinct object oi, and n is the sum of the ki’s, 
our function is an arrangement of the 
multiset with ki copies of each oi.

• There are P(n; k1,…,kr) of these.



Counting Onto Functions
• We’ve counted all functions from O to B, and all 

one-to-one functions, in the case of both distinct 
and identical objects.

• What about onto functions or surjections?

• One case is easy.  If I map r identical objects into 
n boxes by a surjection, I first must have r ≥ n.  

• I can put one object into each box, and then the 
other r-n into the boxes in C(r-1, n-1) ways.  
(We’re just picking a multiset of size r-n from n 
possible items.)



Counting Onto Functions

• The case of mapping distinct objects is more 
complicated.  We’re now picking a partition 
of the r objects into n non-empty blocks.

• The Stirling number of the second kind, or 
S(r, n), is the number of partitions when we 
don’t care about the order of the blocks.  If 
we do care about that order, the number of 
different onto functions is n!S(r, n).



Counting Onto Functions

• Clearly S(0, 0) = 1, S(r, 0) = 0 for n > 0, S(r, 1) = 
1, and S(r, n) = 0 when r < n.  Also S(r, r) = 1, as 
there is only one way to put one in each block.

• S(r, 2) is 2r-1 - 1.  Consider all the subsets of O, 
remove ∅ and O itself, and consider putting 
each other set in the first of two blocks.  This 
counts every two-block partition exactly twice.

• S(r, r-1) is just C(r, 2) because we pick a pair of 
elements to be put in the same block.



Stirling Numbers

• We aren’t ready to compute general Stirling 
numbers yet, but we’ll see in Chapter 6 that 
we can describe all of them by a generating 
function.  Here’s some values of S(r, n):

     n=0  1   2   3   4   5   6 
—————————————————————————————————- 
r=0     1   0   0   0   0   0   0 
  1     0   1   0   0   0   0   0 
  2     0   1   1   0   0   0   0 
  3     0   1   3   1   0   0   0 
  4     0   1   7   6   1   0   0 
  5     0   1  15  25  10   1   0 
  6     0   1  31  90  65  15   1



The Twelvefold Way

• We can count all functions, just injections, or 
just surjections.  (Counting bijections is either 
easy (n!, if n = r) or trivial (0, if n ≠ r).)

• We can then have our objects be distinct or 
not, and have our boxes be distinct or not.  
This gives a total of twelve problems, whose 
solutions are organized in a table called the 
Twelvefold Way.

• We’re only ready here to tackle a few of 
these problems.



The Twelvefold Way
O is:   B is:   Any function  Injection  Surjection 
——————————————————————————————————————————————————— 
dist    dist          nr        P(n, r)   n!S(r, n) 

ident   dist      C(n+r-1, r)  C(n, r)  C(r-1, r-n) 

dist    ident     sum of S’s    0 or 1     S(r, n) 

ident  ident     sum of p’s    0 or 1     pn(r)

Here pn(r) is a partition number, the number of 
ways to divide r identical objects into n identical 
nonempty groups.  We’ll see these again in Section 
6.3 of Tucker, with a generating function.


