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Arrangements w/Repetition

• Voter Power

• Arrangements and Selections

• Arranging Sets and Multisets

• Selecting Multisets

• Restrictions on Selection

• Upper and Lower Bounds

• Restricted Positions



Voter Power

• Consider a committee (or an electoral 
college) where different members have 
different numbers of votes, and decisions are 
made by weighted majority.

• You might think that voting power was 
proportional to the number of votes, but 
consider a weighting of 4, 4, 4, 4, and 1 where 
any three of the five members will outvote 
the other two. 



Voter Power

• A better gauge of voter power is the 
Shapley-Shubik index, similar to the tipping-
point probability used this season by 
fivethirtyeight.com.

• Look at the n! ways to order the voters, and 
determine which is the median voter in 
each, the one who will complete a majority if 
the voters are added in that order.

• The index of voter v is the fraction of orders 
in which v is the median voter.



Voter Power

• Clearly everyone has equal power in the 
4,4,4,4,1 weighting.

• Tucker looks at 2,2,1,1,1, where there are 16 
orders putting each weight-1 person in the 
median, and 36 for each weight-2 person.

• The six New England states are weighted 
11,7,4,4,3,2 in the electoral college (if we 
ignore ME’s split votes).  Let’s see the relative 
power of voters with these weights.



Voter Power

• MA (with 11) is the median 1/5 of the time if 
it is second or fifth, and all the time if it is 
third or fourth, for an index of 40%.

• CT (with 7) is the median 1/5 of the time if it 
is second or fifth, and 2/5 if is third or fourth, 
for an index of 20%.

• Each other state is median if it is third or 
fourth, with MA before it and CT after it, for 
an index of 10%.  The four small states have 
equal voting power.



Arrangements and Selections

• We’ll continue today with a large number of 
examples of counting problems, from two 
principle categories.

• If we have a set of objects, we can arrange 
them in some order, and ask the number of 
distinct ways to do this.

• We can also select an object, such as a set or 
sequence, from some category, and ask the 
number of ways to do this.



Arranging Sets and Multisets

• We’ve already seen the easy problem of 
selecting an order for a given set of n distinct 
objects.  There are P(n, n) = n! of them.

• We also looked last time at the number of 
arrangements of a given multiset with ai 
copies of element xi, and n total objects.  We 
have n!/a1!a2!…ak! ways to arrange these.

• It is worth looking at two different proofs 
that this is the right number.



Arranging a Multiset

• If we mark the ai copies of each element xi to 
distinguish them, we are left with a set of n 
elements, which has n! possible arrangements.

• This overcounts the arrangements of the 
letters themselves.  If we consider two set 
arrangements equivalent if they resolve to the 
same multiset arrangement, we can easily see 
that there are a1!…ak! set arrangements in 
each class.



Arrangements of Multisets
• We could also choose a multiset arrangement  

by first choosing one of the C(n, a1) ways to 
place the x1’s, then one of the C(n-a1, a2) ways 
to place the x2’s, and so forth.

• Rewriting the binomial coefficients in terms 
of factorials gives the same answer as before.

• For example, the anagrams of “banana” can be 
counted as 6!/3!1!2!, or as C(6, 3) × C(3, 1) × 
C(2, 2) = (6!/3!3!)(3!/1!2!)(2!/2!0!) = 30.  

• The order of the choices does not matter.



Selecting Multisets

• What about selecting a multiset of size k from 
an n-element set?

• We solved this problem last time using the 
“stars and bars” argument.  Such a multiset 
may be described by a string of k 0’s and n-1 
1’s, in one of C(k+n-1, k) or C(k+n-1, n-1) 
ways.

• For example, there are C(15, 3) = 15×14×13 / 
1×2×3 = 455 different boxes of 12 donuts 
taken from four different flavors.



Choosing a Multiset?

• We can choose a uniform random sequence 
of k objects from an n-element set by 
throwing an n-sided die k times.  We can 
choose a uniform random set of k objects 
from an n-element set by dealing cards or 
drawing them out of a bag.

• There’s no obvious physical way to choose a 
random multiset.  We could choose a 
sequence, then ignore the order the elements 
came in, but this is not uniform random.



Restrictions on Selection

• We can, as Tucker does in Section 5.3, give 
examples of arrangement and selection 
problems made more complicated by 
restrictions.

• Suppose we have four copies of each letter a, 
b, c, and d, and we want to choose 10 letters 
out of the pool, with at least two of each.

• The only possible distributions are (4, 2, 2, 2) 
or (3, 3, 2, 2), or permutations thereof.



Restrictions on Selection

• With (4, 2, 2, 2), we have four choices of 
which letter we take four of.  With (3, 3, 2, 2), 
we have C(4, 2) = 6 choices of which two 
letters to take three of, for 10 choices in all.

• That’s the number of multisets.  What about 
the arrangements?  There are 10!/4!2!2!2! of 
each of the 4-2-2-2 multisets, and 10!/3!3!2!2! 
of each of the 3-3-2-2’s.  

• The grand total turns out to be 4×18900 + 
6×25200 = 226800.



Restrictions on Selection

• Now let’s say we want a dozen donuts taken 
from five different flavors, but with at least 
one donut of each flavor.  How many such 
multisets of donuts are there?

• The easy trick here is to see that we can pick 
a multiset of seven donuts with no restriction, 
then add one of each flavor.  

• So the number is C(7+5-1,5-1) = C(11, 4) = 
11×10×9×8/1×2×3×4 = 11×10×3 = 330.



Upper and Lower Bounds

• Let’s look at this same trick again by 
comparing two similar problems.  We choose 
a multiset of ten balls from three colors.  We 
first insist there are at least red five balls, then 
that there are at most five.

• The multisets with at least five correspond to 
the multisets of size five with no restrictions: 
there are C(5+3-1, 3-1) = 21.

• But the number with at most five is not as 
easy to count directly.  



Upper and Lower Bounds

• We can count all multisets of ten elements, 
C(10+3-1, 3-1) = 66, and subtract off the 
C(4+3-1, 3-1) = 15 with at least six red balls 
to get 51 multisets with at most five.

• Or we could directly count the number with 
0, 1, 2, 3, 4, and 5 red balls and add these 
numbers together.  There are k+1 ways to 
make a multiset of size k with just two colors, 
so we have (10+1) + (9+1) + (8+1) + (7+1) + 
(6+1) + (5+1) = 11+10+9+8+7+6 = 51 again.



Restricted Positions

• Our last example involves the anagrams of 
the word “banana” with various restrictions.  
We counted 6!/3!1!2! = 60 of these in all.

• What if the b is followed immediately by an a?
We now have an arrangement of the five-
element multiset {ba, n, a, n, a}, of which there 
are 5!/1!2!2! = 30. 

• What if the string “ban” does not occur?  It’s 
easier to count the arrangements of {ban, a, n, 
a} where it does, 4!/1!2!1! = 12, and subtract.



Restricted Positions

• What if the b must occur before all three a’s 
(though not necessarily immediately before 
any of them)?

• There are a number of ways to do this.  
Probably the easiest is to consider the 
possible positions of the two n’s in the string, 
of which there are C(6, 2) = 15.

• Once we place the n’s, the other four letters 
must be b, a, a, and a in that order.  So there is 
one string for each way to place the n’s.


