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Definitions: Flows and Cuts

• Today we will look at flows in a network.

• A network is a directed graph with a source 
node a and a sink node z.  The labels on the 
directed edges represent capacities, the 
maximum amount of “stuff” that can be 
carried on the edge.

• A flow is an assignment of a non-negative 
number (an amount of stuff) to each edge, 
that is bounded by the capacity.



Definitions: Flows and Cuts

• A flow must satisfy some rules.  There is zero 
flow into the source or out of the sink.  And at 
every other node, the total flow in must equal 
the total flow out, so the net flow is zero.

• The value of a flow is the total out of a or into z.

• A cut is a partition of the nodes into two sets, a 
set P containing a and a set Q containing z.  The 
flow across the cut is the sum of flows on edges 
from P to Q, minus the sum of flows on edges 
from Q to P.



Capacity of a Cut

• Given any cut (P, Q), the capacity of the cut 
is the sum of the capacities of every edge 
with one endpoint in P and the other in Q.

• It is easy to see that the net flow across any 
cut in a flow is always equal to the value of 
the flow.  This is because the net flow at any 
middle node is zero.

• Thus no flow can have a value exceeding the 
minimum capacity of any cut.



Min Cuts and Max Flows

• The main result of this lecture is that a flow 
meeting the capacity of the minimum cut can 
always be achieved.  This will be the maximum 
possible value of a flow through that network.

• We say that an edge is saturated by a flow if 
the flow through it equals the capacity.  If an 
edge is not saturated, it has a slack equal to 
the additional flow that it could accept.



Faulty Flow Building

• Here is a simple idea to build a maximum 
flow.  Look at the slack edges, find a path of 
slack edges from a to z, find the maximum 
positive flow possible along that path, and add 
it to the flow.  If there is no such path of slack 
edges, the edges reachable from a by slack 
edges form the set P of a cut, which is 
saturated.

• Unfortunately this simple idea is wrong.



Faulty Flow Example

• Here is a network 
with capacities as 
shown.  The cut with 
just a has capacity 10, 
so we can’t get more 
flow than that.

• We can put 3 on a-b-
d-z, then 3 on a-c-e-z.
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Faulty Flow Example

• We put this flow as 
the second label.

• Now the path a-b-e-z 
can take 2, leaving a-
c-d-z as the only 
remaining path of 
slack edges, with 
minimum slack 1.

• This gives the flow of 
value 9 in red.
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Faulty Flow Example

• There are slack edges 
with this flow: (a,c), 
(b,e), (d,z), and (e,z), 
but no slack path 
from a to z.

• The cut {a, c} has 
capacity 9, so this is a 
maximum flow.
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Faulty Flow Example

• Suppose instead our 
first flows were 5 on a-
b-e-z and 1 on a-c-d-z.  

• This leaves a-c-e-z as 
the only path of slack 
edges, so we put 1 
there for a value of 7.

• Now no edges out of 
{a,c,e} have slack, but 
we don’t have max flow.

b

a

c

d

6,6

5,5

z

e

6,1

1,1

3,1

3,0

6,5

5,2



Faulty Flow Example

• The capacity of cut 
{a,c,e} is 12, but we are 
losing 5 to edge (b, e).

• Consider a virtual path 
a-c-e-b-d-z, where we 
go backward along (b,e) 
by subtracting 2 from 
the flow and add 2 on 
the other edges.  This 
gives the max flow in 
green, with value 9.
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The Augmenting Flow Algorithm

• This gives us our first correct algorithm to 
find the max flow in a network.

• We define a chain to be a sequence of edges 
that form a path if some of them are 
reversed.  

• An augmenting chain for a flow in a 
network consists of slack edges going 
forward and edges with positive flow going 
backward.  



The Augmenting Flow Algorithm

• Adding an augmenting chain to a flow gives a 
new flow with bigger capacity.

• The augmenting flow algorithm repeatedly 
searches for such a chain, adding it to the 
flow, until there is none available.

• Since we are working with integers, this can’t 
go on forever.  If we are stuck, the nodes 
reachable from a by partial chains form a cut, 
and the flow across that cut is maximum.



Example of Bad Flow Choice

• Choosing augmenting 
chains will get us to a 
maximum flow, but not 
necessarily quickly.

• In this graph, we can get 
to the maximum flow 
by 2000 steps of adding 
1 flow each, first using 
a-c-b-z and then a-b-c-z.  
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Max Flows in Polynomial Time

• It turns out that a simple idea solves this 
problem: when searching for an augmenting 
chain, use BFS and thus get a chain with the 
minimum possible number of edges.

• It can be shown (usually in CS 311) that this 
method can saturate a given edge only O(n) 
times, meaning O(ne) augmenting chains and 
thus O(ne2) time, independent of the edge 
weights.



Applications of Network Flow

• If we want to find a maximum flow in an 
undirected network, we just convert each edge 
to two directed edges with the same capacity, 
and delete edges into a or out of z.

• If we want to find the maximum number of 
edge-disjoint paths in a graph, we make a 
network by adding new nodes a and z 
connected to each old node by an edge of 
capacity 1. We know the flow found by our 
algorithm will have integer flow on each edge.



Applications of Network Flow

• Finally, we can apply network flow to what 
would have been the subject of Lecture #14,  
maximum matchings in bipartite graphs.

• Given a graph where all edges between nodes 
in A and nodes in B, we direct each edge from 
a to b, give it capacity 1, then add a new node 
a with edges to each node in A and a new 
node z with edges from each node in B.

• A maximum flow in this network is a 
maximum matching in the original graph.



Hall’s Theorem

• I can’t leave the subject of matchings without 
mentioning the beautiful theorem of Hall.  

• In a bipartite graph with vertex sets A and B 
of size n, for any set S ⊆ A, let N(S) ⊆ B be 
the set of nodes with neighbors in A.

• If |N(S)| < |S|, we have a bottleneck and 
clearly a perfect matching is impossible.

• Hall’s Theorem is the converse, that if there 
are no bottlenecks, a perfect matching exists.



Hall’s Theorem

• We can prove this with network flow.  The 
set a ∪ S ∪ N(S) always forms a cut in our 
network, of capacity at most n - |S| + |N(S)|.

• There’s a nice elementary proof by induction 
on n.  Let x ∈ A and pick y ∈ N({x}).  If 
removing x and y does creates no bottleneck, 
we win.  Otherwise let S of size k be the 
bottleneck set in the new graph, and note 
that |N(S)| must be k-1 because y has to have 
been in N(S) in the old graph.



Hall’s Theorem

• By the IH, S has a perfect matching with the 
old N(S), which includes y.  We want to apply 
the IH as well to SC, to show that it has a 
perfect matching with N(S)C.

• Let T be any subset of SC.  We want to show 
that |T| = |N(T) ∩ N(S)C|.  But we know that 
N(T ∪ S) has the same size as T ∪ S, and the 
elements of N(T ∪ S) - N(S) must have 
neighbors in T as they don’t have them in S. 


