
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #13: Flows in Networks
(Tucker Section 4.3)
David Mix Barrington
5 October 2016

Flows in Networks

• Definitions: Flows and Cuts

• Min Cuts and Max Flows

• A Faulty Algorithm

• The Augmenting Flow Algorithm

• Example of Bad Flow Choice

• Max Flows in Polynomial Time

• Applications of Network Flow

Definitions: Flows and Cuts

• Today we will look at flows in a network.

• A network is a directed graph with a source
node a and a sink node z. The labels on the
directed edges represent capacities, the
maximum amount of “stuff” that can be
carried on the edge.

• A flow is an assignment of a non-negative
number (an amount of stuff) to each edge,
that is bounded by the capacity.

Definitions: Flows and Cuts

• A flow must satisfy some rules. There is zero
flow into the source or out of the sink. And at
every other node, the total flow in must equal
the total flow out, so the net flow is zero.

• The value of a flow is the total out of a or into z.

• A cut is a partition of the nodes into two sets, a
set P containing a and a set Q containing z. The
flow across the cut is the sum of flows on edges
from P to Q, minus the sum of flows on edges
from Q to P.

Capacity of a Cut

• Given any cut (P, Q), the capacity of the cut
is the sum of the capacities of every edge
with one endpoint in P and the other in Q.

• It is easy to see that the net flow across any
cut in a flow is always equal to the value of
the flow. This is because the net flow at any
middle node is zero.

• Thus no flow can have a value exceeding the
minimum capacity of any cut.

Min Cuts and Max Flows

• The main result of this lecture is that a flow
meeting the capacity of the minimum cut can
always be achieved. This will be the maximum
possible value of a flow through that network.

• We say that an edge is saturated by a flow if
the flow through it equals the capacity. If an
edge is not saturated, it has a slack equal to
the additional flow that it could accept.

Faulty Flow Building

• Here is a simple idea to build a maximum
flow. Look at the slack edges, find a path of
slack edges from a to z, find the maximum
positive flow possible along that path, and add
it to the flow. If there is no such path of slack
edges, the edges reachable from a by slack
edges form the set P of a cut, which is
saturated.

• Unfortunately this simple idea is wrong.

Faulty Flow Example

• Here is a network
with capacities as
shown. The cut with
just a has capacity 10,
so we can’t get more
flow than that.

• We can put 3 on a-b-
d-z, then 3 on a-c-e-z.

b

a

c

d

6

5

z

e

6

1

3

3

6

5

Faulty Flow Example

• We put this flow as
the second label.

• Now the path a-b-e-z
can take 2, leaving a-
c-d-z as the only
remaining path of
slack edges, with
minimum slack 1.

• This gives the flow of
value 9 in red.

b

a

c

d

6,3,5

5,3,5

z

e

6,3,4

1,0,1

3,3,3

3,3,3

6,0,2

5,3,4

Faulty Flow Example

• There are slack edges
with this flow: (a,c),
(b,e), (d,z), and (e,z),
but no slack path
from a to z.

• The cut {a, c} has
capacity 9, so this is a
maximum flow.

b

a

c

d

6,5

5,5

z

e

6,4

1,1

3,3

3,3

6,2

5,4

Faulty Flow Example

• Suppose instead our
first flows were 5 on a-
b-e-z and 1 on a-c-d-z.

• This leaves a-c-e-z as
the only path of slack
edges, so we put 1
there for a value of 7.

• Now no edges out of
{a,c,e} have slack, but
we don’t have max flow.

b

a

c

d

6,6

5,5

z

e

6,1

1,1

3,1

3,0

6,5

5,2

Faulty Flow Example

• The capacity of cut
{a,c,e} is 12, but we are
losing 5 to edge (b, e).

• Consider a virtual path
a-c-e-b-d-z, where we
go backward along (b,e)
by subtracting 2 from
the flow and add 2 on
the other edges. This
gives the max flow in
green, with value 9.

b

a

c

d

6,6

5,5

z

e

6,1,3

1,1

3,1,3

3,0,2

6,5,3

5,2,4

The Augmenting Flow Algorithm

• This gives us our first correct algorithm to
find the max flow in a network.

• We define a chain to be a sequence of edges
that form a path if some of them are
reversed.

• An augmenting chain for a flow in a
network consists of slack edges going
forward and edges with positive flow going
backward.

The Augmenting Flow Algorithm

• Adding an augmenting chain to a flow gives a
new flow with bigger capacity.

• The augmenting flow algorithm repeatedly
searches for such a chain, adding it to the
flow, until there is none available.

• Since we are working with integers, this can’t
go on forever. If we are stuck, the nodes
reachable from a by partial chains form a cut,
and the flow across that cut is maximum.

Example of Bad Flow Choice

• Choosing augmenting
chains will get us to a
maximum flow, but not
necessarily quickly.

• In this graph, we can get
to the maximum flow
by 2000 steps of adding
1 flow each, first using
a-c-b-z and then a-b-c-z.

a

b

1000

1000

z

c

1000

1

1000

Max Flows in Polynomial Time

• It turns out that a simple idea solves this
problem: when searching for an augmenting
chain, use BFS and thus get a chain with the
minimum possible number of edges.

• It can be shown (usually in CS 311) that this
method can saturate a given edge only O(n)
times, meaning O(ne) augmenting chains and
thus O(ne2) time, independent of the edge
weights.

Applications of Network Flow

• If we want to find a maximum flow in an
undirected network, we just convert each edge
to two directed edges with the same capacity,
and delete edges into a or out of z.

• If we want to find the maximum number of
edge-disjoint paths in a graph, we make a
network by adding new nodes a and z
connected to each old node by an edge of
capacity 1. We know the flow found by our
algorithm will have integer flow on each edge.

Applications of Network Flow

• Finally, we can apply network flow to what
would have been the subject of Lecture #14,
maximum matchings in bipartite graphs.

• Given a graph where all edges between nodes
in A and nodes in B, we direct each edge from
a to b, give it capacity 1, then add a new node
a with edges to each node in A and a new
node z with edges from each node in B.

• A maximum flow in this network is a
maximum matching in the original graph.

Hall’s Theorem

• I can’t leave the subject of matchings without
mentioning the beautiful theorem of Hall.

• In a bipartite graph with vertex sets A and B
of size n, for any set S ⊆ A, let N(S) ⊆ B be
the set of nodes with neighbors in A.

• If |N(S)| < |S|, we have a bottleneck and
clearly a perfect matching is impossible.

• Hall’s Theorem is the converse, that if there
are no bottlenecks, a perfect matching exists.

Hall’s Theorem

• We can prove this with network flow. The
set a ∪ S ∪ N(S) always forms a cut in our
network, of capacity at most n - |S| + |N(S)|.

• There’s a nice elementary proof by induction
on n. Let x ∈ A and pick y ∈ N({x}). If
removing x and y does creates no bottleneck,
we win. Otherwise let S of size k be the
bottleneck set in the new graph, and note
that |N(S)| must be k-1 because y has to have
been in N(S) in the old graph.

Hall’s Theorem

• By the IH, S has a perfect matching with the
old N(S), which includes y. We want to apply
the IH as well to SC, to show that it has a
perfect matching with N(S)C.

• Let T be any subset of SC. We want to show
that |T| = |N(T) ∩ N(S)C|. But we know that
N(T ∪ S) has the same size as T ∪ S, and the
elements of N(T ∪ S) - N(S) must have
neighbors in T as they don’t have them in S.

