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Shortest Paths in Graphs

• Paths in a Weighted Graph

• Dijkstra: Tucker vs. Priority Queue

• A* Search 

• APSP by Matrix Multiplication

• Paths and Matrices over a Semiring

• The Floyd-Warshall Algorithm

• Correctness of Floyd-Warshall



Paths in a Weighted Graph

• If the weights of a weighted graph represent 
costs, the cost of a path is the sum of the 
edge costs along the path.  

• In general there are an exponential number 
of paths, and we want the one with the 
minimum cost, called the shortest path.

• This has many applications beyond physical 
distance.  Weights might be currencies, with 
edge weights the cost of converting a sum 
from one currency to another.



Negative Weights

• Of course, in a non-physical situation, you might 
gain by going from one state to another, which 
can be modeled by negative weights on edges.

• Some of the algorithms we will present still 
work with negative weights, as long as we don’t 
have a negative cycle.

• In that case we may actually not have a shortest 
path from one vertex to another, if there are 
infinitely many with increasingly negative costs.



Shortest-Path Algorithms

• It turns out that the best algorithms to find 
the shortest path from u to v also solve other 
problems at the same time.

• Dijkstra’s algorithm (uniform-cost search) 
will solve the single-source shortest path 
problem, by finding the shortest path from u 
to each other vertex.  If we only care about v, 
we can stop early.

• We will also present two algorithms to solve 
the all-pairs shortest path problem.



Dijkstra: Tucker vs. PQ

• The idea of Dijkstra’s algorithm is to maintain a 
set S of vertices to which we know the shortest 
paths.  Originally this is just u, and eventually it 
is all the vertices.  (We assume the graph is 
connected, possibly directed.)

• Tucker presents a somewhat strange version in 
the book.  He starts a counter m at 0, and 
increments it by ones.  At each stage he looks 
for a node v in S and node x not in S such that 
d(u, v) + c(v, x) = m.  Then he adds x to S.



Tucker’s Version of Dijkstra

• Here d(u, v) is the path distance found, 
assumed to be optimal, and e(v, x) is the edge 
weight.  

• We can add x to S because we know that the 
path from u through v to x is optimal: if there 
were a shorter path we would have seen it.

• What is strange is that the number of passes 
is proportional to the cost of the shortest 
path, which could be very high.



Sensible Version of Dijkstra

• In CS 250, we call the sensible version of 
Dijkstra’s algorithm uniform-cost search, 
and place it in a framework that includes DFS 
and BFS.

• We keep a priority queue, whose entries are 
of the form (v, d, x), where v is a node in S, x 
a node not in S, and d the cost d(u, v) + e(v, 
x).  The priority of the entry is d.

• At each round we pull the entry of minimum 
priority, and add x to S, remembering v and d.



Dijkstra: Tucker vs. PQ

• When we are done, all the nodes are in S.  To 
find the best path from u to some node y, we 
look at the predecessor node in the entry we 
saved for y, then the predecessor of that, and 
so on until we get back to u.

• For each edge in the graph, we do O(1) 
operations plus two priority queue operations. 

• If we use a heap for the PQ, our total running 
time is O(e log e), with e the number of edges.  
This is O(n2 log n) for a dense graph.



A* Search

• Also in CS 250, we usually present an 
alternate version of UCS called A* search.

• This finds the same result as UCS, but may do 
it faster with the help of a heuristic, an 
additional function that is a lower bound on 
the true cost.

• The only change in the code is that the 
priority of the PQ is a function of both the 
distance found and the heuristic value.



Semirings, Paths and Matrices 

• We normally represent a weighted graph as a 
matrix M, where the entry Mi,j is the label on 
the edge from i to j.  If i = j, we might have Mi,i  
= 0, and if there is no edge we have Mi,j = ∞.

• A solution to the APSP problem is also a 
matrix N, where Ni,j is the distance from i to j 
along the shortest path.

• The first of our two ways to get from M to N 
involves matrix multiplication, and requires 
a digression.



Semirings, Paths, and Matrices

• Matrix multiplication is defined in terms of 
addition and multiplication of entries: If AB = 
C, then Cij is the sum over all k of AikBkj.

• A semiring is a structure with an “addition” 
operation and a “multiplication” operation, 
satisfying various axioms including the 
distributive law.  We can multiply matrices 
over any semiring.

• Over the correct semiring, multiplication will 
solve our APSP problem.



Semiring Axioms and Examples

• Addition is commutative, associative, and has 
an identity element called 0.

• Multiplication is associative and has an 
identity element called 1.

• a(b+c) = ab + bc

• Boolean: {0, 1}, + is ⋁, × is ⋀

• Naturals, integers, reals, complexes, with +, ×

• Languages + is ∪, × is language concatenation



The Path-Matrix Theorem

• Let S be any semiring, let G be a graph 
labeled with entries from S, and let M be the 
matrix holding these entries.

• The Path-Matrix Theorem says that if N is 
the matrix Mt, where I is the identity matrix 
for S, then Nij is the “sum”, over all paths of t 
edges from i to j, of the “product” of the 
costs along the path.

• This is easy to prove by induction on t.



Applications of Path-Matrix

• One simple semiring is the boolean set {0, 1}, 
where “addition” is OR and “multiplication” is 
AND.  Then the product of edges on paths 
that exist is 1, and on paths that don’t exist is 
0.  Nij = 1 iff there exists a path of length t.

• To find the transitive closure of M, we 
compute the matrix (M+I)n-1, where i is the 
identity matrix.

• Over the semiring of the naturals, Nij is the 
number of paths of t edges from i to j.



Applications of Path-Matrix

• But what if “addition” is the minimum 
operation, and “multiplication” is ordinary 
addition?

• Then Nij is the minimum, over all paths of  t 
edges from i to j, of the total path cost.

• And (M+I)n-1 has entries giving the length of 
the shortest path (with any number of edges) 
from i to j.  (Since we have no negative edge 
weights, the shortest path is a simple path.)



Applications of Path-Matrix

• Suppose that our semiring is the real 
numbers from 0 to 1, with ordinary addition 
and multiplication.  Let G be the graph of a 
Markov chain, so that Mij is the probability of 
going from state i to state j in one time step.

• Then (Mt)ij is the probability of going from i 
to j in exactly t time steps.  The Markov Chain 
Theorem says that under most circumstances, 
Mt approaches a constant matrix as t → ∞.



The Floyd-Warshall Algorithm 

• Matrix multiplication is simple, but for the 
boolean and min-plus semirings there is 
another method that gets us the same result 
with fewer operations.

• In either case we update d[i,j] if we find a 
better result by combining d[i,k] and d[k,j].

for (int k=1; k <= n; k++) 
   for (int i=1; i <= n; i++) 
      for (int j=1; j <= n; j++) 
         d[i,j] = d[i,j] + d[i,k]*d[k,j]; 
   



The Floyd-Warshall Algorithm

• Clearly this is O(n3) time.  Warshall proposed 
this as a means to find the transitive closure 
of a relation (the boolean case) and Floyd 
adapted it to shortest paths.

for (int k=1; k <= n; k++) 
   for (int i=1; i <= n; i++) 
      for (int j=1; j <= n; j++) 
         d[i,j] = d[i,j] + d[i,k]*d[k,j]; 
    

• But why does it work?



Correctness of F-W

• After k steps of the outer loop, we claim that 
d[i,j] represents the cost of the best path 
from i to j that uses only {1,…,k} as 
intermediate vertices.

• Clearly at the start, a single edge is the best 
path that uses no intermediate vertices.

• A path using {1,…,k+1} either uses only {1,
…,k} or is the concatenation of two paths, 
one from i to k+1 and one from k+1 to j.



Correctness of F-W

• Our innermost step takes the minimum of 
the cost of the best path using {1,…,k} and 
the best two-path combination through k+1. 
This preserves the invariant, and when we 
reach the end we have the cost of the best 
path using any possible intermediate vertices.

• A similar algorithm can be used to calculate 
the regular expression for the language of a 
given finite automaton, though in CS 250 and 
501 we use “state elimination” instead.



FW versus Multiplication

• As we said, the F-W method takes O(n3) time, 
and is certainly easy to code.

• Raising a matrix to the n-1 power involves O(log 
n) matrix multiplications.

• A matrix multiplication takes O(n3) operations by 
the usual method, so we need O(n3 log n) for the 
powering, worse than F-W’s time.

• There are faster matrix multiplication algorithms, 
but they are impractical unless n is huge.


