CMPSCI 575/MATH 513

Combinatorics and Graph Theory

Lecture #1 |: Shortest Paths in Graphs
(Tucker Section 4.1)

David Mix Barrington
30 September 2016

Shortest Paths in Graphs

Paths in a Weighted Graph
Dijkstra: Tucker vs. Priority Queue
A" Search

APSP by Matrix Multiplication
Paths and Matrices over a Semiring

The Floyd-Warshall Algorithm

Correctness of Floyd-VVarshall

Paths in a Weighted Graph

® |f the weights of a weighted graph represent
costs, the cost of a path is the sum of the
edge costs along the path.

® |n general there are an exponential humber
of paths, and we want the one with the
minimum cost, called the shortest path.

® This has many applications beyond physical
distance. Weights might be currencies, with
edge weights the cost of converting a sum
from one currency to another.

Negative Veights

® Of course, in a hon-physical situation, you might
gain by going from one state to another, which
can be modeled by negative weights on edges.

® Some of the algorithms we will present still
work with negative weights, as long as we don’t
have a negative cycle.

® |n that case we may actually not have a shortest
path from one vertex to another, if there are
infinitely many with increasingly negative costs.

Shortest-Path Algorithms

® |t turns out that the best algorithms to find
the shortest path from u to v also solve other
problems at the same time.

® Dijkstra’s algorithm (uniform-cost search)
will solve the single-source shortest path
problem, by finding the shortest path from u
to each other vertex. If we only care about v,
we can stop early.

® We will also present two algorithms to solve
the all-pairs shortest path problem.

Dijkstra: Tucker vs. PQ

® The idea of Dijkstra’s algorithm is to maintain a
set S of vertices to which we know the shortest
paths. Originally this is just u, and eventually it
is all the vertices. (VWe assume the graph is
connected, possibly directed.)

® Jucker presents a somewhat strange version in
the book. He starts a counter m at 0, and
increments it by ones. At each stage he looks
for a node v in S and node x not in S such that
d(u, v) + ¢(v,x) = m. Then he adds x to S.

Tucker’s Version of Dijkstra

Here d(u, v) is the path distance found,
assumed to be optimal, and e(y, x) is the edge

weight.

We can add x to S because we know that the
path from u through v to x is optimal: if there
were a shorter path we would have seen it.

What is strange is that the number of passes
is proportional to the cost of the shortest

path, which could be very high.

Sensible Version of Dijkstra

® |n CS 250, we call the sensible version of

Dijkstra’s algorithm uniform-cost search,
and place it in a framework that includes DFS

and BFS.

® We keep a priority queue, whose entries are
of the form (v, d, x), where v is a node in §, x
a node not in S,and d the cost d(u, v) + e(v,
x). The priority of the entry is d.

® At each round we pull the entry of minimum
priority, and add x to S, remembering v and d.

Dijkstra: Tucker vs. PQ

® When we are done, all the nodes are in S. To
find the best path from u to some node y, we
look at the predecessor node in the entry we
saved for y, then the predecessor of that, and
so on until we get back to u.

® For each edge in the graph, we do O(I)
operations plus two priority queue operations.

® |f we use a heap for the PQ, our total running
time is O(e log e), with e the number of edges.
This is O(n? log n) for a dense graph.

A" Search

® Also in CS 250, we usually present an
alternate version of UCS called A search.

® This finds the same result as UCS, but may do
it faster with the help of a heuristic, an
additional function that is a lower bound on
the true cost.

® The only change in the code is that the
priority of the PQ is a function of both the
distance found and the heuristic value.

Semirings, Paths and Matrices

® VWe normally represent a weighted graph as a
matrix M, where the entry M;; is the label on
the edge from i to . If i = j, we might have M;;
= 0, and if there is no edge we have M;; = 0.

® A solution to the APSP problem is also a
matrix N, where N;; is the distance from i to j
along the shortest path.

® The first of our two ways to get from M to N
involves matrix multiplication, and requires
a digression.

Semirings, Paths, and Matrices

® Matrix multiplication is defined in terms of
addition and multiplication of entries: If AB =
C, then Cj is the sum over all k of AiBi;.

® A semiring is a structure with an “addition”
operation and a “multiplication” operation,
satisfying various axioms including the
distributive law. We can multiply matrices
over any semiring.

® Over the correct semiring, multiplication will
solve our APSP problem.

Semiring Axioms and Examples

® Addition is commutative, associative, and has
an identity element called 0.

® Multiplication is associative and has an
identity element called I.

® a(b+c) =ab + bc
® Boolean: {0, I}, +is Vv, X is A
® Naturals, integers, reals, complexes, with +, X

® |anguages + is U, X is language concatenation

The Path-Matrix Theorem

® | et S be any semiring, let G be a graph
labeled with entries from S, and let M be the
matrix holding these entries.

® The Path-Matrix Theorem says that if N is
the matrix MY, where | is the identity matrix
for S, then N is the “sum”, over all paths of t
edges from i to j, of the “product” of the
costs along the path.

® This is easy to prove by induction on t.

Applications of Path-Matrix

® One simple semiring is the boolean set {0, |},
where “addition” is OR and “multiplication” is
AND. Then the product of edges on paths
that exist is |, and on paths that don’t exist is
0. Nj = | iff there exists a path of length t.

® TJo find the transitive closure of M, we
compute the matrix (M+D)™!, where i is the
identity matrix.

® Over the semiring of the naturals, N; is the
number of paths of t edges from i to j.

Applications of Path-Matrix

® But what if “addition” is the minimum
operation, and “multiplication” is ordinary

addition?

® Then Njjis the minimum, over all paths of t
edges from i to j, of the total path cost.

® And (M+I)"! has entries giving the length of
the shortest path (with any number of edges)
from i toj. (Since we have no negative edge
weights, the shortest path is a simple path.)

Applications of Path-Matrix

® Suppose that our semiring is the real
numbers from 0 to |, with ordinary addition
and multiplication. Let G be the graph of a
Markov chain, so that M; is the probability of
going from state i to state j in one time step.

® Then (MY); is the probability of going from i
to j in exactly t time steps. The Markov Chain
Theorem says that under most circumstances,

Mt approaches a constant matrix as t = 09.

The Floyd-Warshall Algorithm

® Matrix multiplication is simple, but for the
boolean and min-plus semirings there is
another method that gets us the same result
with fewer operations.

for (int k=1; k <= n; k++)
) .

for (int 1=1; = n; 1++)
for (int j=] <= n; j++)
di1,]] = d[1 jl + d[1,k]*d[k,]];

® |n either case we update d[i,j] if we find a
better result by combining d[i,k] and d[k,j].

The Floyd-Warshall Algorithm

® Clearly this is O(n?) time. Warshall proposed
this as a means to find the transitive closure
of a relation (the boolean case) and Floyd
adapted it to shortest paths.

for (int k=1: k <= n; k++)
< e

for (int 1=1; = n; 1++)
for (int j=1; jJ <= n; Jj++)
dli1,]] = d[1 j] + d[1,k]*d[k,]];

® But why does it work?

Correctness of F-W

e After k steps of the outer loop, we claim that
d[i,j] represents the cost of the best path
from i to j that uses only {l,...,k} as

intermediate vertices.

® (Clearly at the start, a single edge is the best
path that uses no intermediate vertices.

® A path using {l,...,k+1} either uses only {l,
...,k} or is the concatenation of two paths,
one from i to k+1| and one from k+1| to|.

Correctness of F-W

® Our innermost step takes the minimum of
the cost of the best path using {l,...,k} and
the best two-path combination through k+1.
This preserves the invariant,and when we
reach the end we have the cost of the best
path using any possible intermediate vertices.

® A similar algorithm can be used to calculate
the regular expression for the language of a
given finite automaton, though in CS 250 and
501 we use “state elimination” instead.

FVV versus Multiplication

As we said, the F-W method takes O(n?) time,
and is certainly easy to code.

Raising a matrix to the n-1 power involves O(log
n) matrix multiplications.

A matrix multiplication takes O(n?) operations by
the usual method, so we need O(n® log n) for the
powering, worse than F-W'’s time.

There are faster matrix multiplication algorithms,
but they are impractical unless n is huge.

