
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #11: Shortest Paths in Graphs
(Tucker Section 4.1)
David Mix Barrington
30 September 2016

Shortest Paths in Graphs

• Paths in a Weighted Graph

• Dijkstra: Tucker vs. Priority Queue

• A* Search

• APSP by Matrix Multiplication

• Paths and Matrices over a Semiring

• The Floyd-Warshall Algorithm

• Correctness of Floyd-Warshall

Paths in a Weighted Graph

• If the weights of a weighted graph represent
costs, the cost of a path is the sum of the
edge costs along the path.

• In general there are an exponential number
of paths, and we want the one with the
minimum cost, called the shortest path.

• This has many applications beyond physical
distance. Weights might be currencies, with
edge weights the cost of converting a sum
from one currency to another.

Negative Weights

• Of course, in a non-physical situation, you might
gain by going from one state to another, which
can be modeled by negative weights on edges.

• Some of the algorithms we will present still
work with negative weights, as long as we don’t
have a negative cycle.

• In that case we may actually not have a shortest
path from one vertex to another, if there are
infinitely many with increasingly negative costs.

Shortest-Path Algorithms

• It turns out that the best algorithms to find
the shortest path from u to v also solve other
problems at the same time.

• Dijkstra’s algorithm (uniform-cost search)
will solve the single-source shortest path
problem, by finding the shortest path from u
to each other vertex. If we only care about v,
we can stop early.

• We will also present two algorithms to solve
the all-pairs shortest path problem.

Dijkstra: Tucker vs. PQ

• The idea of Dijkstra’s algorithm is to maintain a
set S of vertices to which we know the shortest
paths. Originally this is just u, and eventually it
is all the vertices. (We assume the graph is
connected, possibly directed.)

• Tucker presents a somewhat strange version in
the book. He starts a counter m at 0, and
increments it by ones. At each stage he looks
for a node v in S and node x not in S such that
d(u, v) + c(v, x) = m. Then he adds x to S.

Tucker’s Version of Dijkstra

• Here d(u, v) is the path distance found,
assumed to be optimal, and e(v, x) is the edge
weight.

• We can add x to S because we know that the
path from u through v to x is optimal: if there
were a shorter path we would have seen it.

• What is strange is that the number of passes
is proportional to the cost of the shortest
path, which could be very high.

Sensible Version of Dijkstra

• In CS 250, we call the sensible version of
Dijkstra’s algorithm uniform-cost search,
and place it in a framework that includes DFS
and BFS.

• We keep a priority queue, whose entries are
of the form (v, d, x), where v is a node in S, x
a node not in S, and d the cost d(u, v) + e(v,
x). The priority of the entry is d.

• At each round we pull the entry of minimum
priority, and add x to S, remembering v and d.

Dijkstra: Tucker vs. PQ

• When we are done, all the nodes are in S. To
find the best path from u to some node y, we
look at the predecessor node in the entry we
saved for y, then the predecessor of that, and
so on until we get back to u.

• For each edge in the graph, we do O(1)
operations plus two priority queue operations.

• If we use a heap for the PQ, our total running
time is O(e log e), with e the number of edges.
This is O(n2 log n) for a dense graph.

A* Search

• Also in CS 250, we usually present an
alternate version of UCS called A* search.

• This finds the same result as UCS, but may do
it faster with the help of a heuristic, an
additional function that is a lower bound on
the true cost.

• The only change in the code is that the
priority of the PQ is a function of both the
distance found and the heuristic value.

Semirings, Paths and Matrices

• We normally represent a weighted graph as a
matrix M, where the entry Mi,j is the label on
the edge from i to j. If i = j, we might have Mi,i
= 0, and if there is no edge we have Mi,j = ∞.

• A solution to the APSP problem is also a
matrix N, where Ni,j is the distance from i to j
along the shortest path.

• The first of our two ways to get from M to N
involves matrix multiplication, and requires
a digression.

Semirings, Paths, and Matrices

• Matrix multiplication is defined in terms of
addition and multiplication of entries: If AB =
C, then Cij is the sum over all k of AikBkj.

• A semiring is a structure with an “addition”
operation and a “multiplication” operation,
satisfying various axioms including the
distributive law. We can multiply matrices
over any semiring.

• Over the correct semiring, multiplication will
solve our APSP problem.

Semiring Axioms and Examples

• Addition is commutative, associative, and has
an identity element called 0.

• Multiplication is associative and has an
identity element called 1.

• a(b+c) = ab + bc

• Boolean: {0, 1}, + is ⋁, × is ⋀

• Naturals, integers, reals, complexes, with +, ×

• Languages + is ∪, × is language concatenation

The Path-Matrix Theorem

• Let S be any semiring, let G be a graph
labeled with entries from S, and let M be the
matrix holding these entries.

• The Path-Matrix Theorem says that if N is
the matrix Mt, where I is the identity matrix
for S, then Nij is the “sum”, over all paths of t
edges from i to j, of the “product” of the
costs along the path.

• This is easy to prove by induction on t.

Applications of Path-Matrix

• One simple semiring is the boolean set {0, 1},
where “addition” is OR and “multiplication” is
AND. Then the product of edges on paths
that exist is 1, and on paths that don’t exist is
0. Nij = 1 iff there exists a path of length t.

• To find the transitive closure of M, we
compute the matrix (M+I)n-1, where i is the
identity matrix.

• Over the semiring of the naturals, Nij is the
number of paths of t edges from i to j.

Applications of Path-Matrix

• But what if “addition” is the minimum
operation, and “multiplication” is ordinary
addition?

• Then Nij is the minimum, over all paths of t
edges from i to j, of the total path cost.

• And (M+I)n-1 has entries giving the length of
the shortest path (with any number of edges)
from i to j. (Since we have no negative edge
weights, the shortest path is a simple path.)

Applications of Path-Matrix

• Suppose that our semiring is the real
numbers from 0 to 1, with ordinary addition
and multiplication. Let G be the graph of a
Markov chain, so that Mij is the probability of
going from state i to state j in one time step.

• Then (Mt)ij is the probability of going from i
to j in exactly t time steps. The Markov Chain
Theorem says that under most circumstances,
Mt approaches a constant matrix as t → ∞.

The Floyd-Warshall Algorithm

• Matrix multiplication is simple, but for the
boolean and min-plus semirings there is
another method that gets us the same result
with fewer operations.

• In either case we update d[i,j] if we find a
better result by combining d[i,k] and d[k,j].

for (int k=1; k <= n; k++)
 for (int i=1; i <= n; i++)
 for (int j=1; j <= n; j++)
 d[i,j] = d[i,j] + d[i,k]*d[k,j];

The Floyd-Warshall Algorithm

• Clearly this is O(n3) time. Warshall proposed
this as a means to find the transitive closure
of a relation (the boolean case) and Floyd
adapted it to shortest paths.

for (int k=1; k <= n; k++)
 for (int i=1; i <= n; i++)
 for (int j=1; j <= n; j++)
 d[i,j] = d[i,j] + d[i,k]*d[k,j];

• But why does it work?

Correctness of F-W

• After k steps of the outer loop, we claim that
d[i,j] represents the cost of the best path
from i to j that uses only {1,…,k} as
intermediate vertices.

• Clearly at the start, a single edge is the best
path that uses no intermediate vertices.

• A path using {1,…,k+1} either uses only {1,
…,k} or is the concatenation of two paths,
one from i to k+1 and one from k+1 to j.

Correctness of F-W

• Our innermost step takes the minimum of
the cost of the best path using {1,…,k} and
the best two-path combination through k+1.
This preserves the invariant, and when we
reach the end we have the cost of the best
path using any possible intermediate vertices.

• A similar algorithm can be used to calculate
the regular expression for the language of a
given finite automaton, though in CS 250 and
501 we use “state elimination” instead.

FW versus Multiplication

• As we said, the F-W method takes O(n3) time,
and is certainly easy to code.

• Raising a matrix to the n-1 power involves O(log
n) matrix multiplications.

• A matrix multiplication takes O(n3) operations by
the usual method, so we need O(n3 log n) for the
powering, worse than F-W’s time.

• There are faster matrix multiplication algorithms,
but they are impractical unless n is huge.

