
NAME:

SPIRE ID:

COMPSCI 501
Formal Language Theory

Solutions to Midterm Spring 2024

D. A. M. Barrington 3 April 2024

DIRECTIONS:

• Answer the problems on the exam pages.

• There are seven problems on pages 2-7, some with mul-
tiple parts, for 100 total points plus 5 extra credit. Final
scale will be determined after the exam.

• The supplemental page 8 has definitions for your use
and should not be handed in.

• If you need extra space use the back of a page – both
sides will be scanned.

• No books, notes, calculators, or collaboration.

1 /20

2 /30

3 /10

4 /10

5 /10

6 /10

7 /10+5

Total /100+5

1

Question 1 (20): These are ten true/false statements, with no justification needed or wanted (2
points each):

• (a, 2) The intersection of any finite collection of CFL’s is decidable, but it is not neces-
sarily a CFL itself.

TRUE. Any CFL is decidable, and any intersection of TD languages is TD.
But in discussion we saw a pair of CFL’s whose intersection is not a CFL.

76% correct.

• (b, 2) Let X and Y be two languages such that there exists some function f such that
for all strings w, (w ∈ X) ↔ (f(w) ∈ Y). Then it must be the case that X ≤m Y .

FALSE. This would be true if we said that f were computable, but we didn’t.

38% correct. We don’t feel guilty about this one at all. Read the text, not what you
imagine it says!

• (c, 2) There exists an undecidable language with a unary alphabet, that is, with |Σ| = 1
where Σ is the input alphabet.

TRUE. There is a computable bijection from unary strings to binary strings,
so any language over a binary alphabet can be mapped to a unary language.

64% correct.

• (d, 2) Let A and B be two languages such that B is undecidable, and there exists a
reduction showing A ≤m B. Then A must also be undecidable.

FALSE. As long as A and B each have a string in it, and each have a string
not in it, any TD language A can be reduced to B. It doesn’t matter how
difficult it might be to decide membership in B for any other strings.

81% correct.

• (e, 2) Recall that an n-bit string w is incompressible if its Kolmogorov complexity
satisfies K(w) ≥ n. If v and w are both incompressible n-bit strings, then the string vw
is also incompressible.

FALSE. If v and w are the same string, for example, vw can be described
as “two copies of v”, and so K(vw) ≤ n+ c, for some constant c representing
the size of the TM that makes the two copies. As long as n is large enough,
K(vw) is less the length of vw, 2n, and so is not incompressible.

59% correct.

2

• (f, 2) Let Σ be any non-empty alphabet. Then the language L = {anbn : n ≥ 0, a ∈
Σ, b ∈ Σ} must not be regular.

FALSE. This fails if Σ has only one letter, since in that case a and b must be
the same letter and L = (aa)∗.

40% correct. This was genuinely tricky.

• (g, 2) It is possible to convert any context-free grammar G into an NFA N such that
L(G) = L(N).

FALSE. The language of an NFA must be regular, and we know that there
exist grammars with non-regular languages.

90% correct.

• (h, 2) Let f be any function from N × N to {0, 1}, where N is the set of natural
numbers. Then there does not exist a function d from N to {0, 1} such that for any n,
d(n) ̸= f(n, n).

FALSE. The function exists, since we can define d(n) to be 1 − f(n, n). The
point of diagonalization is that the function d(n) is not equal to the function
f(i, n) for any i.

86% correct. Better reading comprehension on this one!

• (i, 2) For any string w, define a TM to be a w-printer if, on any input, it halts with w
on its tape. Then there exists some Turing machine M such that, on any input w, M
halts with the description of some w-printer on its tape.

TRUE. We did this in lecture as part of our proof of the Recursion Theorem.

94% correct.

• (j, 2) Let M be any Turing machine and let t be any partial function computed by it,
so that for any input x, t(x) is the string left on M ’s tape if it halts (if it doesn’t halt,
then t(x) is not defined). Then there exists a Turing machine R such that for any input
string w, R accepts w if and only if the value t(w) is not defined.

FALSE. The set of strings on which M halts is an arbitrary TR language,
and this R would only exist if that language were also co-TR.

79% correct.

3

Question 2 (30): These are five true-false questions, with brief justification required. Three
points for each correct boolean answer, and up to three points per question for the justification:

• (a, 6) Let c be any positive natural. A c-PDA is a (nondeterministic) pushdown au-
tomaton such that its stack never contains more than c characters. Then the language
of any c-PDA is regular.

TRUE. There are only a finite number of possible contents of the stack. We
can convert the c-PDA to an NFA with a larger state set, using the state set
to specify the stack contents. Since the language of the c-PDA is thus also
the language of an NFA, it is regular.

Mean score 4.4/6.0, 51% full credit, 77% correct boolean. Some people overlooked that
the c-PDA is nondeterministic, so in order to convert it to a DFA you need to go through
an NFA.

• (b, 6) Let X be any non-empty TD language whose complement X is also non-empty.
Then X ≤m X.

TRUE. Let y be an element of X and let n be an element of X. Our reduction
f on input w first determines whether w ∈ X, using the assumed decider for
X. If w ∈ X, then we set f(x) = n, and if w ̸∈ X, we set f(w) to be y.

Mean score 4.0/6.0, 22% full credit, 83% correct boolean. To show this, you need to show
a mapping from strings to strings that meets the conditions. Lots of people wanted to
“reverse the answer”, or “reverse the states”, when you need to change strings to strings
rather than change a TM to a TM.

4

• (c, 6) Let X be any non-empty TR language whose complement X is also non-empty.
Then X ≤m X.

FALSE. Suppose X is ATM . If there were a reduction from ATM to ATM , the
language ATM would be TR, since the TR languages are closed downward
under ≤m. But we know that ATM is not TR.

Mean score 5.1/6.0, 67% full credit, 92% correct boolean. I’m glad that this one went so
well.

• (d, 6) Recall that PCP is the language of finite sets of dominoes that contain a match.
Then the language PCP is TR-complete.

TRUE. We know that PCP is TR because we can search, using a TM, for
any sequence of dominoes that forms a match. The reduction ATM ≤m PCP
was carried out in Sipser and in the lectures.

Mean score 3.9/6.0, 14% full credit, 81% correct boolean. There are two parts to being
TR-complete, and in general I gave two of the three points for a good justification of one
of them.

• (e, 6) The language EQCFG is co-TR, but not TD.

TRUE. An input to EQCFG would be a pair of grammars (G,H), with the
true instances being grammars such that L(G) = L(H). A pair is not in EQCFG

if and only if there exists a string w that is in one of the languages L(G) or
L(H), but not in the other. The complement of EQCFG is TR, since (with a
TM) we can search for such a string w, then verify that w is in one language
and not the other, using the known decider for the language ACFG.

It remains to show that EQCFG is not TD. But we know that ALLCFG is not
TD, from Sipser and from lectures. We can reduce ALLCFG to EQCFG by
mapping an arbitrary TM M to the pair (M,Z) where Z is a TM that accepts
any input.

Mean score 3.9/6.0, 24% full credit, 71% correct boolean. A common mistake was to
confuse finding a string in one language but not in the other, which you need to prove
that the languages are different, with proving that languages are equal. The latter is not
TR, as you can’t determine that they are equal without looking at infinitely many cases.

5

Definitions: Some of Questions 3-5 deal with two new definitions. If X is any language over some
alphabet Σ, we define the cube root ofX, called CR(X), to be the language {w : www ∈ X}.
Similarly, the cube of X, called Cube(X), is the language {www : w ∈ X}.

Question 3 (10): Prove that if X is any regular language over any finite alphabet Σ, then CR(X)
is also a regular language.

Let D be a DFA for the language X. For every state q of D, build a new DFA Dq

which is identical to D except that q is the start state of Dq. Build a DFA E that
is the direct product of all the machines Dq for each state. Given any input string
w, δ∗E(q0, w) is a tuple containing δ∗D(q, w) for each q. For each tuple, determine
(off-line) whether the www is accepted by D, by seeing to what state p is taken
by w from q0 in D, then to what state r is taken by w from p, and finally to what
state s is taken by w from r. We mark each tuple as a final state in E if and only
if s is a final state of D. This is a DFA whose language is the cube root of X.

Here is an alternate proof, which uses more states but may have been easier to
come up with. Define an NFA with ε-moves to each of n2 states, one for each pair
(p, q) of states of D. In state (p, q), we want to accept if and only if w takes q0 to
p, from p to q, and from q to a final state. If any string www is in X, there will
be exactly one pair (p, q) for which this happens, and if www is not in X, there
will be none. For each state (p, q), then, we can build a DFA whose states are the
product three copies of D, with the appropriate start states, so that this DFA
will accept w if and only those three conditions are satisfied.

Mean score 3.7/10, 4% full credit. One of the full-credit answers used the first proof above,
and the other two used the second. In general, I gave 2/10 for fragmentary or fundamentally
misguided answers, and 4/10 for some plausible approach – only a few beyond the correct
answers got more than 4/10.

Question 4 (10): Prove that there exists a context-free language Y (over the alphabet {0, 1})
such that Cube(Y) is not context-free.

Let Y be the language 0∗1. So Cube(Y) is the set of strings of the form 0n10n101

for all naturals n, and it is easy using the CFLPL that this language is not a
CFL. Let p be the alleged pumping length of any G that is claimed to have
L(G) = {0n10n10n : n ≥ 0}. We choose w = 0p10p10p, and let w = uvxyz be the
alleged division into five strings matching the rules of the CFLPL. The string vxy
must have length at most p, so it can contain at most one 1 and at most two of
the three groups of 0’s. If we pump down to the string uxz, the removed strings v
and y must, between them, have at least one letter. If a 1 is removed, uxz cannot
be in the language since it needs three 1’s. If one or more 0’s are removed, since
at most of the three groups can be affected, the three groups cannot all have the
same size and the string uxz is not in the language. Since the language does not
obey the CFLPL, it is not a CFL.

Mean score 7.5/10, 55% full credit. Most people (except the ones who reversed CR(X) and
Cube(X), were able to recognize that this was a standard CFLPL proof, and carry it out.

6

Question 5 (10): Here are two more problems about the cube root and cube languages defined
above:

• (a) Prove that if Z is a TR language, prove that both CR(Z) and Cube(Z) are also TR
languages.

A TM whose language is CR(Z) takes an input w and runs the machine for Z
with input www. A TM whose language is Cube(Z) takes an input w, rejects
if it is not of the form uuu for some string u, and otherwise runs the machine
for Z with input u.

Mean score 3.9/5.0, 54% full credit. You do need to specify that your Cube(Z) machine
rejects its input if it is not of the form uuu. I think the nicest proof, for both arguments,
took an enumerator for Z and created new enumerators for the two new languages.

7

• (b) Prove that if Q is the language of an LBA, then CR(Q) is also the language of an
LBA.

To make an LBA for CR(Q), we first take an LBA M for Q and expand its
tape alphabet so that we can think of its tape as containing three separate
strings over M ’s input alphabet. These strings will operate as a single tape,
with the “virtual head” being on one of the three sections. (The actual
head may have to run from one end to the other to deal with action on
the virtual head exactly at one of the boundaries.) Once this is set up,
the new PDA places two other copies on the virtual tape to put www on
it. Then it simulates P on www, accepting if P accepts. Since the virtual
head is restricted to remain within the space originally occupied by www,
the simulated computation remains within the space originally occupied by
w, following the rules for an LBA.

Mean score 2.1/6.0, 12% full credit. The main problem was that if you are taking an
input w and trying to run the new input www on it, you need some kind of argument to
say that a string with 3n letters fits into n cells on the LBA’s tape.

Question 6 (10): In this problem we define a Silly TM to be a one-tape machine with two read
heads and no ability to change letters on its tape. On a given time step, each head may either
move right or stay where it is. Prove that the language ESillyTM is undecidable.

Given any TM M and input w, build a Silly TM whose language is any valid ACH
of M on w. Begin by checking, character by character, whether the input begins
with the start configuration c0 for input w. If it is, move Head 1 past it, leaving
Head 2 in place. If it is not, just reject. For each succeeding phase (if it succeeds)
read configuration ci on Head 2 while passing over the following string with Head
1. Reject unless the configuration seen on Head 1 follows from the one seen on
Head 2, according to the rules of M . This means that each new letter is equal to
the corresponding old one seen, unless the read head is there. If it is there, the
two heads must check that the new letters on Head 1 properly result from what
Head 2 sees. Head 1 may also read a new blank symbol as long as both tapes
reach the ends of their configurations right after that. This continues until Head
1 reaches the end of the input, and the Silly TM accepts if and only if this last
configuration is in the accepting state.

Mean score 3.7/10, 14% full credit. This was kind of a bloodbath. If you started by trying to
run a TM on a SillyTM, which cannot modify its tape, I basically stopped reading and gave
you 2/10. To get more than 4/10, you had to recognize that this was one of the relatively
few cases where we are proving undecidability for a language that is about machines strictly
weaker than TM’s. As you should realize, every such case has involved accepting computation
histories. I gave 6/10 for answers that amounted to “mumble mumble accepting computation
histories mumble”, since that was the only track to be on. One clever solution (which got
9/10 because it has some serious mistakes) was to reduce the PCP problem to ESillyTM , by
accepting strings of dominoes of the form (ti, bi) that form a match. One head reads the letters
of the t strings, and the other reads the same letters of the b strings, each in the right position
to read the matching letters at one time. One of the heads, in its spare time, has to also verify
that the pairs of strings given are actually valid dominoes. (This proof does not contradict
what I said above about ACH’s, because the PCP proof used the ACH method.)

8

Question 7 (10+5): Given a collection of Turing machines {Mi} = {M0,M1,M2, . . .}, {Mi} is
defined to be a computable collection if there exists a computable function q : {1}∗ → Σ∗

such that q(1n) = ⟨Mn⟩ (that is, q takes a natural number and maps it to the description of
the n’th Turing machine in the collection). In this case we also call {L(Mi)} a computable
collection of TR languages.

• (a) Is the union of any countable collection of TR languages necessarily TR? Prove your
answer.

It is not. Any language whatsoever, since it contains only a countable number
of strings, is the union of a collection of singleton sets {w}, and each of these
is clearly TR. We know that there exist non-TR languages.

Mean score 2.7/5.0, 9% full credit, 62% correct boolean. My most common comment on
this one (and probably on all three parts of Q7) was “not really a proof”. It is true, for
example, that if you tried to use the correct argument for Q7b on Q7a, it would not work
because a TM cannot start running any of the given TM’s if it doesn’t know what they
are. But that in itself does not prove that the statement of 7a is not true. To refute the
proposition that all such languages are TR, you need to come up with an example of a
non-TR language that is a countable union of TR languages.

• (b) Is the union of any countable computable collection of TR languages necessarily TR?
Prove your answer.

It is. We make a TM M∗ such that L(M∗) =
∑∞

i=0 L1. On input w, M∗ runs
each of the machines Mi on w in parallel by dovetailing, accepting if and only
one of the Mi’s accepts. (For the dovetailing, we could, for each n in series,
run each of the first n machines for n steps each.)

Mean score 3.8/5.0, 47% correct, 91% correct boolean. Pretty much any answer using
the word “dovetailing” was good enough. But there were a number of bogus reduction
proofs.

• (c, extra credit) Is the intersection of a countable computable collection of TR languages
necessarily TR? Prove your answer.

It is not. We define a countable collection {Mi} whose intersection is the
non-TR language ATM . We define the machine Mi to take input ⟨M,w⟩, run
M on w for i steps, and accept unless M has accepted w within that time.

Let INT be the intersection of the languages of all the languages {Mi}. Con-
sider any pair ⟨M,w⟩. If this M accepts w in t steps, then this pair is not in
INT because it is not in any L(Mi) for any i with i ≤ t. But if M does not
accept w, this pair is in INT because it is in L(Mi) for all i.

Mean score 1.8/5.0, 4% full credit, 41% correct boolean. That is, 41% of all papers
said “no”, but a Iarge fraction of the others didn’t answer the boolean question at all.
There were lots of bad proofs of the correct answer, often involving statements of the
form “run M on w, if it reject then. . . ”, ignoring the possibility that it might not halt.
We made this one extra credit because we thought it was genuinely hard to prove that
a specific non-TR language was the intersection of a computable countable collection of
TR languages.

9

Supplemental Page for COMPSCI Midterm Spring 2024

Language ATM (similarly AREG, etc.) Set of pairs (M,w) such that M accepts w

Language ALLTM : (similarly ALLREG, etc.) Set of machines that accept all possible strings over
their alphabet

Computable Function: Function f from strings to strings such that some Turing machine, on
any input w, always halts with f(w) on its tape

Countable Set: Any set that is either finite or has a bijection with the set of natural numbers

Context-Free Grammar (CFG): Grammar where rules allow single non-terminals to be re-
placed by strings

Context-Free Language (CFL): Definable by a context-free grammar or a PDA

co-TR: A language A is co-TR if and only if its complement A is TR.

Language ETM : (similarly EREG, etc.) Set of machines with empty languages

Language EQTM : (similarly EQREG, etc.) Set of pairs of machines with equal languages, i.e.,
{(M1,M2) : L(M1) = L(M2)}.

Linear Bounded Automaton (LBA): A machine like a one-tape Turing machine, but with no
additional space to the right of its input.

Mapping Reduction (≤m): A ≤m B means that there exists a computable function f such that
∀w : w ∈ A ↔ f(w) ∈ B

Pushdown Automaton (PDA): Nondeterministic finite-state machine with an added stack

Language REGTM : (similarly REGREG, etc.) Set of machines M such that L(M) is a regular
language

Regular Language: Can be defined by a DFA, NFA, or regular expression

Turing Decidable (TD): Is the language of a TM that always halts

Turing Recognizable (TR): Is the language of any TM

10

