
CS 501: Formal Language Theory Spring 2024

Final Examination Solutions
Released: 5/15/2024, 6:00 pm EST Time Limit: 120 minutes Due: 5/15/2024, 8:00 pm EST

Note: LATEX template courtesy of UC Berkeley EECS dept.

Instructions. This final contains seven questions on pages 1-9, for a total of 100 points with 5 extra credit.
You have a total of 120 minutes to complete it. There will be a supplemental sheet with some definitions on
it.

The final is an individual effort. You are required to write your entire attempt yourself, and are forbidden
from consulting anyone else. Failure to abide by this will result in immediate failure from the course, among
other consequences.

• This is a closed-book exam, with no books, notes, calculators, or collaboration.

Submissions. Please write your answers on the test sheet. You may use the backs of pages, but let us
know in the indicated place for each question where we can find the rest of your answer. Page 10 and 11 is
a supplemental sheet with useful information – do not put answers on it.

1-1

Final Exam 1-2

1. (10 × 2 points) Unjustified True/False Questions. For each of the following questions, indicate
simply whether it is TRUE or FALSE. No justification needed or wanted.

(a) The circuit classes in the NC hierarchy satisfy the inclusions NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ . . .,
and none of these inclusions are known to be strict.

FALSE. Those inclusions are all correct, but we argued in lecture that NC0 6= AC0,
and we asserted the First-Saxe-Sipser-Ajtai theorem that says AC0 6= NC1.

(b) If a language Y and its complement Y are both context-free, then it is regular.

FALSE. The language {anbn : n ≥ 0} and its complement are both CFL’s.

(c) If there exists a linear-time algorithm for the vertex cover problem VC, then the classes NP and
co-NP must be equal.

TRUE. P = NP because we have an NP-complete problem in P, and P is closed
under complementation.

(d) It is not known whether the TQBF problem (the set of true quantified boolean formulas) is
solvable in polynomial time.

TRUE. This is widely conjectured to be false, since it would imply P = PSPACE,
but this is unknown.

(e) If a language is defined by a context-sensitive grammar, it can be decided by a deterministic
Turing machine using O(n2) space.

TRUE. Such a language is also the language of an NLBA and thus is in NSPACE(n),
and the result follows from Savitch’s Theorem.

(f) If |Σ| = 1, the Post Correspondence Problem over the alphabet Σ is Turing decidable.

TRUE. We have a match if and only if there either is any domino with the same
string on top and bottom, or two strings where one has the top string longer and the
other has the bottom string longer.

(g) With Σ = {0, 1}, any sufficiently long palindrome fails to be incompressible.

TRUE. Such a string of length n can be described by giving its first n/2 or (n + 1)/
bits, then indicating that it either an even-length or an odd-length palindrome. So
K(w) ≤ n/2 +O(1), which is less than n for sufficiently large n.

(h) The Regular Language Pumping Lemma may be used to prove a language to be regular, by
showing that every string in the language satisfies the conclusion of the lemma.

FALSE. Every regular language satisfies the RLPL, but the converse in not true in
general.

(i) Assuming the result of Question 4 below, the class POLYNBP is closed under complementation.

TRUE, because we prove below that it is the same class as NL.

(j) The set SELF of all Turing machines M that output their own descriptions is a TR language, but
is not TD.

TRUE. We can build a recognizer for this language that just runs M on itself and,
if it halts, compares its output to its description. We can prove SELF to not be TD
because because we can use the Recursion Theorem, given any M and w, to build a
TM that outputs its own description if M accepts w and doesn’t halt if not.

Final Exam 1-3

2. (5 × 6 points) Justified True/False Questions. For each of the following questions, indicate
whether it is TRUE or FALSE, and provide a brief justification (i.e. either a proof or a counterexample).

(a) On the midterm, we defined a computable collection of TR languages (L1, L2, L3, . . .), where
each language Li is the language of some TM Mi, and there is a single computable function q
that produces a description of Mi on input i. Let INT be the set of all languages that are
intersections of computable collections of TR languages. Then INT is complete for the Π2 level
of the Arithmetic Hierarchy.

TRUE. Any element X of INT is in Π2 because we can express w ∈ X as ∀i : ∃c :
ACH(Mi, c, w). If Y is an arbitrary language in INT , so that w ∈ Y is defined as
∀u : ∃v : R(u, v, w) where R is a TD predicate, we can define a computable collection of
Turing machines where Mi, on input w, searches for any string v such that R(i, v, w) is
true and accept if there is. The intersection of all the languages Li for this collection
is exactly Y .

(b) We have seen that the language REACH, of triples (G, s, t) such that G is a directed graph and
there is a path from s to t in G, is NL-complete under ≤L reductions. Define the language
DAG-REACH to be the subset of REACH where each graph G must be a directed acyclic graph,
with its nodes numbered such that any edge goes from smaller to larger node numbers. Then
DAG-REACH is also NL-complete under ≤L reductions.

TRUE. To see that DAG-PATH is in NL, a log-space NDTM can first verify the
condition on the edges and node numbers of G and then guess a path from s to t.
We can prove completeness by showing PATH ≤L DAG-PATH. Given an arbitrary
directed graph G with n nodes, make a new graph H with nodes (i, u) where u is a
node of G and i is a natural with 0 ≤ i ≤ n− 1. For every i < n− 1, H has edges from
(i, u) to (i + 1, u) and from (i, u to (i + 1, v) for every edge (u, v) in G. We number the
nodes of H with i as the high-order bits, so that H is clearly a DAG. Then there is
a path from s to t in G if and only there is a path from (0, s) to (n− 1, t) in H.

(c) The language OV ERLAPCFG is the set of all pairs (G,H) of CFG’s such that L(G)∩L(H) 6= ∅.
Then the language OV ERLAPCFG is Turing decidable.

FALSE. We can reduce PCP ≤m OV ERLAPCFG by a mapping a PCP instance to a
grammar G with rules S → tiSai for all top strings ti, and S → ε, and a grammar H
with rules S → biai for all bottom strings bi, and S → ε. Any string common to L(G)
and L(H) could only come from a match in the PCP instance.

(d) Define a Sillier TM to be a one-tape Turing machine M such that if q is a state and a and b
are any two letters in M ’s tape alphabet, then δ(q, a) = δ(q, b). Then the language L(M) of any
Sillier TM M is finite, and thus the language ASillierTM is TD.

FALSE. Since the Sillier TM behaves the same on any input string, its language is
either empty or Σ∗. So it is TD (since we can easily tell which), but the language
need not be infinite.

(e) Let S be an arbitrary finite set of undirected graphs. Define the language ContainsS to be the set
of undirected graphs G such that there exists a graph H in S such that H is a subgraph of G (see
the definition on the supplemental sheet). Then, assuming P 6= NP , the language ContainsS is
not in the class P.

FALSE. For any graph H in S, with k nodes, we can test all
(
n
k

)
k! = O(nk) possible

assignments of vertices of H to vertices of G, and for each one test whether this
assignment proves that H is a subgraph of G. Since k is a constant, this all happens
in time O(nk) time, a polynomial. The total time will be n`, where ` is the number
of nodes in the largest graph in S.

Final Exam 1-4

3. (10 points + 5 XC) Wordle and Regular Languages. Let W be the set of all five-letter strings
over the alphabet Σ = {a, b, . . . , z} and let D be a arbitrary subset of W . We define the language CD

to be the set of all strings (of whatever length) that contain five consecutive letters that form a string
in D.

• (a, 5) Prove, by any method, that for any D, the language CD is regular.

There are lots of ways to do this, easiest if describe a regular expression that is the
sum of Σ∗wΣ∗ for all w ∈ D
• (b, 5) Prove a finite upper bound on the number of Myhill-Nerode classes in CD, for any D.

(Note that this result implies that of part (a), but you may want to do (a) separately in case your
solution to (b) is wrong.)

Every string in CD is equivalent to any other, any other two strings with the last
same four letters are equivalent, you can have a separate class for every string of
length three or less, so this is 1 + 1 + 26 + 262 + 263 + 26 + 4.

• (c, 5XC) Prove that for any D with |D| = n, there are at most 5n+ 1 Myhill-Nerode classes for
CD. (Again, solving this also solves both (a) and (b), but there are easier ways to solve (b).)

Induction on n. If n = 0, we need only one rejecting state and 1 ≤ 5(0) + 1. If n = 1,
we need six states {0, 1, 2, 3, 4, 5}, where state i indicates that the we have not seen
the word w in D yet, and that the last i letters have been a prefix of w. In this case
6 ≤ 5(1) + 1. Assume that we have a DFA for CD, and we need to make a DFA for
CD′ , where D′ is D plus one new word w. We make four new states w1, w2, w3, and
w4 where the input is taken to wi if we have not yet seen a word in D′, and the last i
letters are a prefix of w. If is possible that one or more of these states coincide with
other states for other strings. For example, if MOOSE was already in D, and w is
the new word MOUSE, we don’t need to add w1 and w2 because already have states
for the prefixes M and MO. So from MO, it still goes to MOO on an O, but goes to
the new state w3 for MOU if the next letter is U.

This construction takes at most 4n+ 2 states for |D| = n, which is better than 5n+ 1
as long as n is positive. I gave you the weaker bound because you might come up
with a construction that meets that bound.

Final Exam 1-5

4. (10 points) Nondeterministic Branching Programs. In Discussion #10, we defined branching
programs and the language POLYBP of languages defined by log-space uniform polynomial-size
branching programs. Here we define nondeterministic branching programs (NBP’s), which are
like branching programs but where a non-leaf node may have any number of 0-edges and any number
of 1 edges, as well as free edges that may be taken whatever the input variable is. An input is in
the language of the NBP if it is possible to go from the start node to an accepting leaf, using either
ordinary edges matching the input or free edges. We define the class POLYNBP to the the set of
languages of log-space uniform NBP families whose size (number of nodes) is bounded by a polynomial
in their number of inputs. Prove that the class POLYNBP is equal to the class NL.

To show that POLYNBP contains NL, we note that a log-space NDTM can first construct
the NBP (since the family is log-space uniform), and then maintain its location as it goes
from the start node to a leaf, following the rules according to the input, and guessing
whether to take any free edges. The input is in the language of the NBP if and only if
there is a path to an accepting node, and this NDTM can take this path if and only if it
exists.

To show that NL contains POLYBP, consider an arbitrary language in NL, defined by
a log-space NDTM N with a clock as in Discussion #10. For any input size n make an
NBP where each node represents a configuration of N on inputs of size n. The start
node corresponds to the start configuration, and for each non-halting configuration, we
define 0-edges and 1-edges for all moves that N might make from that configuration, for
the appropriate input bit on the given cell of N ’s input tape. Finally we mark halting
configurations as accepting or rejecting. The NBP can choose a path to an accepting
node if and only if it is possible for N to accept the input.

Final Exam 1-6

5. (10 points) Classroom Scheduling is NP-Complete. A University registrar has n students and
m courses for which she needs to assign final exam times, using k time slots. If x and y are two
different courses, and there is any student in both courses, she may not give them the same time slot.
Let SCHED be the set of tuples (S,C,A, k) such that:

• S is a list of students,

• C is a list of courses,

• A is the set of pairs (s, c) in S × C such student s is in course c, and

• k is the number of time slots, such that

• It is possible to assign each course in C to a time slot with no student being assigned two courses
with the same time slot.

Prove that this language is NP-complete.

To prove membership in NP, we construct a verifier that accepts a function f : A →
{1, . . . , k} if ∀x : ∀y : ((x 6= y) ∧ f(x) = f(y))→ ¬∃s : (s, x) ∈ A ∧ (s, y) ∈ A.

To prove NP-hardness, we show 3-COLOR ≤p SCHED. Given an arbitrary undirected
graph G with n vertices, we let C be the vertices of G, have one student s in S for each
edge (u, v) of G and add (s, u) and (s, v) to A, and set k = 3. A schedule from A to {1, 2, 3}
exists that obeys the constraints if and only if the graph G is 3-colorable.

Final Exam 1-7

6. (10 points) How Many a’s and b’s? Let Σ = {a, b} and define a language X that is a subset of
the regular language a∗b∗. A string aibj is in X if and only if j ≤ i ≤ 2j. That is, there are at least as
many a’s as there are b’s, and there are not more a’s than twice as many as there are b’s. Find both:

• A context-free grammar for X, and

• A pushdown automaton for X.

You may use standard constructions to convert one to the other, but we want explicit examples for
both the CFG and PDA. Producing one and just claiming that the other exists will get you no points
for the other.

Grammar: S → aSb, S → aaSb, S → ε. Clearly any derivation from this grammar will
use the first rule some number x times and use the second rule some y times. We will
have 2x+ y a’s and x+ y b’s, and we will definitely have x+ y ≤ 2x+ y ≤ 2(x+ y). For any
particular string aibj following the rule, we can set x = i− j and y = 2j − 1.

PDA: We could use the top-down parser, but the following might be simpler. State 1 is
the start state with only transition (e, e, $) to State 2. (I’m using e in place of ε.) State 2
has a transition (a, e, a) to State 3. State 3 has two transitions (a, e, a) and (a, e, e), both to
State 2. Both States 2 and 3 also have transitions (e, e, e) to State 4. State 4 has a loop
(b, a, e), and a transition (e, $, e) to the final State 5. The only way for the PDA to accept
is to read the a’s and put between half of them and all of them onto the stack. Then it
has to match these a’s exactly to b’s from the input.

Final Exam 1-8

7. (10 points) Implicitly Defined Circuits. We’re going to define a family of Boolean circuits, but
they will be too large to be given as input in the normal way. An Implicitly Defined Circuit (IDC)
with n inputs is defined by a poly-time Turing machine M which can be used to get an exponential
number of NC0 circuits, each with n inputs and n outputs. (Recall that an NC0 circuit is one where
each output depends on only a constant number of inputs.) For any input size n and any number i
with 1 ≤ i ≤ 2p(n), M outputs a description of the NC0 circuit Ci. (Here p(n) is a fixed polynomial in
n.) The IDC is the composition of all the circuits, so that the n inputs feed into C1, which feed into
C2, and so on, until the rightmost output bit of C2p(n) is the output of the IDC.

The language IDCVAL is the set of pairs (M,w) where M is such a Turing machine, w is a binary
string, and the corresponding IDC accept w. Prove that the language IDCVAL is PSPACE-complete.

We can compute the output of an IDC in PSPACE as follows. For each i, maintaining
our count because i can be represented in only p(n) bits, we take the n-bit input to Ci,
find Ci using M , and compute its n-bit output. We simply return the rightmost bit of
the last circuit.

Given an arbitrary PSPACE deterministic TM with n input bits and space bound p(n),
we define a Cook-Levin like tableau with 2p(n) rows, each a binary string of length p(n).
We can design an NC0 circuit to convert a row of the tableau to the one above it, since
each bit of the next row depends only on a constant number of bits in the previous row.
Assuming we normalize the TM to run for exactly 2p(n) steps and accepts by signaling in
its rightmost bit, the corresponding IDC will compute the result of TM’s computation.

