\qquad

COMPSCI 501

Formal Language Theory
Midterm Spring 2023
D. A. M. Barrington

10 April 2023

DIRECTIONS:

- Answer the problems on the exam pages.
- There are eight problems on pages $2-8$, some with multiple parts, for 100 total points plus 10 extra credit. Final scale will be determined after the exam.
- The supplemental page 9 has definitions for your use and should not be handed in.
- If you need extra space use the back of a page.
- No books, notes, calculators, or collaboration.

1	$/ 20$
2	$/ 30$
3	$/ 10$
4	$/ 10$
5	$/ 10$
6	$/ 10$
7	$/ 10$
8	$/+10$
Total	$/ 100+10$

Question 1 (20): These are ten true/false statements, with no justification needed or wanted (2 points each):

- (a, 2) The language $\{\langle M\rangle: L(M) \in C F L\}$, where M is a TM, is Turing decidable.
- (b, 2) The language $\{\langle M\rangle: L(M) \in C F L\}$, where M is a TM, is Turing recognizable.
- (c, 2) If $A \leq_{m} B$, and B is not co-TR, it is possible that A is Turing recognizable.
- (d, 2) If Σ is a finite alphabet, then every string in Σ^{*} is finite.
- (e, 2) If X and Y are each nonempty TD languages, then $X \leq_{m} Y$ must be true.
- (f, 2) If X is a language, and both X and its complement \bar{X} are both context-free, it is possible X is not a regular language.
- (g, 2) If A is not a CFL, and $A \leq_{m} B$, then it is possible that B could be a CFL.
- (h, 2) Let G be a context-free grammar, let p be a pumping length for it in the CFLPL, and assume that $L(G)$ is an infinite language. Then it is possible that $L(G)$ contains no strings w such that $p \leq|w| \leq 2 p$.
- (i,2) Recall that $K(x)$ is the length of the minimal description of a binary string x. It is not the case that for every string, such that x is a member of any regular language, $K(x)$ is strictly less than $|x|$.
- $(\mathrm{j}, 2)$ There exists a Turing machine M that accepts a string if and only that string is same length as the description of M.

Question 2 (30): These are five true-false questions, with brief justification required. Three points for each correct boolean answer, and up to three points per question for the justification:

- (a, 6) The following language is undecidable: $Q=\{\langle G, x\rangle: \exists u: \exists y: u x y \in L(G)\}$. This language Y is the set of pairs consisting of a context-free grammar G and a string x such that G can generate some superstring of x.
- (b, 6) The following language is decidable: $R=\{\langle G, x\rangle: \forall u: \forall y: u x y \in L(G)\}$. This language Y is the set of pairs consisting of a context-free grammar G and a string x such that G can generate every superstring of x.
- (c, 6) Let $\Sigma=\{0,1\}$. Let f be any function from Σ to Σ^{*} (from letters to strings). We extend f to a homomorphism f from Σ^{*} to Σ^{*} by defining $f\left(a_{1} a_{2} \ldots a_{n}\right)$ as $f\left(a_{1}\right) f\left(a_{2}\right) \ldots f\left(a_{n}\right)$. Then if S is any regular language, it is possible that the language $f(S)=\{f(w): w \in S\}$ is not a regular language.
- (d, 6) Let f be a homomorphism of languages as defined in Question 2(c). Then if T is a regular language, then it is possible that the language $f^{-1}(T)=\{w: f(w) \in T\}$ is not a regular language.
- (e, 6) The following language is undecidable: U is the set of all pairs $\langle M, w\rangle$ such that M is a single-tape TM, w is a string, and M accepts w while never modifying the part of the tape containing the input.

Definitions: Some of Questions 3-8 deal with a new definition. If L_{1} and L_{2} are any two languages over the same alphabet, the quotient language L_{1} / L_{2} is the set of all strings x such that there exists a string w such that $x w \in L_{1}$ and $w \in L_{2}$. An important special case is when $L_{2}=\{w\}$, where w is a specific string, and we write this quotient language as L_{1} / w.

Question 3 (10): Prove that if V is a regular language, and w is any fixed string, then the language V / w is regular.

Question 4 (10): Prove that is L is a context-free language, and w is any fixed string, then the language L / w is context-free. (Hint: It may be easier to solve this by generalizing. If you assume that if L is a context-free language and that B is regular, and you prove L / B is context-free, this suffices - why?)

Question 5 (10): A Turing machine M, with one tape, is defined to cycle on any input w if there exists a configuration C such that if started in w, M reaches C more than once. Prove that if L is a TR language, then there exists a Turing machine M such that $L(M)=L$ and M does not cycle on any input w.

Question 6 (10): Consider the language $D O U B L E_{T M}$, the set of Turing machines $\langle M\rangle$ such that $L(M)$ contains a string of the form $w w$. Is $D O U B L E_{T M}$ a TR language? Is it a co-TR language? Prove your answers. Do not use the result of Question 7.

Question 7 (10): Prove that the language $D O U B L E_{C F G}$, the set of context-free grammars $\langle G\rangle$ such that $L(G)$ contains a string of the form $w w$, is undecidable. (Hint: Make a reduction PCP $\leq_{m} D O U B L E_{C F G}$ as follows. Let the set of dominoes for the PCP problem be $\left\{\left[\frac{x_{1}}{y_{1}}\right], \ldots,\left[\frac{x_{k}}{y_{k}}\right]\right\}$ and let a_{i} be a unique terminal for each domino. Build the grammar G with a rule $S \rightarrow A^{\prime} B^{\prime}$ and, for each i with $1 \leq i \leq k$, rules $A^{\prime} \rightarrow x_{i} A a_{i}, A \rightarrow x_{i} A a_{i}, A \rightarrow \epsilon$, $B^{\prime} \rightarrow y_{i} B a_{i}, B \rightarrow y_{i} B a_{i}$, and $B \rightarrow \epsilon$. Prove that the PCP instance has a match if and only if $L(G)$ contains a string of the form $w w$.

Question 8 (10 extra credit): In this problem, we will prove that the language $R E G_{C F G}$, the set of context-free grammars G (with $\Sigma=\{0,1\}$) such that $L(G)$ is regular, is undecidable. We will build a reduction $A L L_{C F G} \leq_{m} R E G_{C F G}$, as follows. Throughout the problem, Σ denotes $\{0,1\}$. Let Z be the language $\left\{0^{n} 1^{n}: n \geq 0\right\}$, which we know not to be regular. Given a grammar G, with alphabet Σ, we define a grammar G^{\prime} (over the alphabet $\{0,1, \#\}$) such that $L\left(G^{\prime}\right)=Z \# \Sigma^{*} \cup \Sigma^{*} \# L(G)$.

1. Describe how to build the grammar G^{\prime} from the grammar G.
2. Prove that if $\langle G\rangle \in A L L_{C F G}$, then $L\left(G^{\prime}\right)$ is a regular language.
3. Suppose that some string $w \in \Sigma^{*}$ is not in $L(G)$. Prove that the quotient language $L\left(G^{\prime}\right) / \# w$ is not regular.
4. Using the result of Question 3, whether you solved it or not, explain how we may now conclude that $R E G_{C F G}$ is undecidable.

Supplemental Page for COMPSCI Midterm Spring 2023

Language $A_{T M}$ (similarly $A_{R E G}$, etc.) Set of pairs (M, w) such that M accepts w
Language $A L L_{T M}$: (similarly $A L L_{R E G}$, etc.) Set of machines that accept all possible strings over their alphabet

Computable Function: Function f from strings to strings such that some Turing machine, on any input w, always halts with $f(w)$ on its tape

Context-Free Grammar (CFG): Grammar where rules allow single non-terminals to be replaced by strings

Context-Free Language (CFL): Definable by a context-free grammar or a PDA
co-TR: A language A is co-TR if and only if its complement \bar{A} is TR.
Language $E_{T M}$: (similarly $E_{R E G}$, etc.) Set of machines with empty languages
Mapping Reduction $\left(\leq_{m}\right): A \leq_{m} B$ means that there exists a computable function f such that $\forall w: w \in A \leftrightarrow f(w) \in B$

Pushdown Automaton (PDA): Nondeterministic finite-state machine with an added stack
Language $R E G_{T M}$: (similarly $R E G_{R E G}$, etc.) Set of machines M such that $L(M)$ is a regular language

Regular Language: Can be defined by a DFA, NFA, or regular expression
Turing Decidable (TD): Is the language of a TM that always halts
Turing Recognizable (TR): Is the language of any TM

