CS 501: Formal Language Theory Spring 2023

Final Examination SOLUTIONS
Released: 5/24/2023, 6:00 pm EST Time Limit: 120 minutes Due: 5/24/2023, 8:00 pm EST

Note: ITEX template courtesy of UC Berkeley EECS dept.

Instructions. This final contains seven questions on pages 1-9, for a total of 100 points. You have a total
of 120 minutes to complete it. There will be a supplemental sheet with some definitions on it.

The final is an individual effort. You are required to write your entire attempt yourself, and are forbidden
from consulting anyone else. Failure to abide by this will result in immediate failure from the course, among
other consequences.

e This is a closed-book exam, with no books, notes, calculators, or collaboration.

Submissions. Please write your answers on the test sheet. You may use the backs of pages, but let us
know in the indicated place for each question where we can find the rest of your answer. Page 10 and 11 is
a supplemental sheet with useful information — do not put answers on it.

Name:

SPIRE ID:

1-1



Final Exam SOLUTIONS 1-2

1. (10 x 2 points) Unjustified True/False Questions. For each of the following questions, indicate
simply whether it is TRUE or FALSE. No justification needed or wanted.

(a)

(b)

Let ¥ = {0,1}. There exists a bijection from all strings over X to all languages over X.
FALSE. Diagonalization proves exactly that this cannot be done.

If X is a context-free language over the alphabet {a,b,c,...,z} that contains all of the strings
a™b™c™ for all n with n > 0, then it is not the case that it must contain at least one other string
in a*b*c*.

FALSE. If it didn’t, you could intersect it with the regular language a*b*c* and get a context-free
grammar for expression for the famously known non-CFL.

If YV is any infinite TR language, and n is any natural, it is possible that there does not exist a
string in Y that is compressible by n bits.

FALSE. Use the Recursion Theorem to find a machine M that finds its own description, find the
length m of that description, and run an enumerator for Y to find the first string longer than
m+n.

Let Z be a language in the class NC!. Then there exists a family of boolean formulas {C,, : n > 0}
such that each C), decides membership in Z for strings of length n, the depth of C,, is O(logn),
the size of C), is polynomial in n, and its gates are binary AND, binary OR, and unary NOT.
Note that a circuit is a formula if it is a tree, meaning that a given gate may feed into only one
other gate.

TRUE. The definition tells us that there is a circuit family meeting all these conditions except
being a formula. But we can convert the circuit into a formula by duplicating gates. The size of
the resulting formula is at most 2% where d is the depth, and 2°0°8™) is polynomial in n.

Let D7-SAT be the set of satisfiable formulas with depth at most 7, unbounded fan-in OR and
NOT gates, and unary NOT gates. Then, like CIRCUIT-SAT, D,-SAT is NP-complete (assuming
P +# NP).

TRUE. It’s clear that D7-SAT is in NP, since we can guess a satisfying instance. We know that
D7-SAT is hard for NP because it is a special case of 3-SAT.

It is not the case that the class L is a strict subset of the context-free languages.

TRUE. It is not a subset at all, because {a™b"c™ : n > 0} is in L but not context-free.

It is not the case that the class of context-free languages is closed under union, concatenation,
Kleene star, and intersection.

TRUE. It is closed for the first three, but {a™b"c"™ : n < o} is the intersection of two CFL’s, as
we showed in a discussion this term.

Let SUBGRAPH-ISO be the set of two undirected graphs G and H where G has a subgraph
isomorphic to H. Then SUBGRAPH-ISO is NP-complete (assuming P # NP).

TRUE: CLIQUE <, SUBGRAPH-ISO, if (G,i) is an instance of CLIQUE, then reduction is
simply to (G, K;) where K; is a complete graph with i. And it’s obvious that SUBGRAPH-ISO is
in the class NP.

If X is a language in NP, then it is possible that the language X* is not in N P.

FALSE. On an input w, guess the partition of w into substrings, then verify that each substring
is in X . This is possible if and only if w is in X*, and can be done in NP.

Using the Recursion Theorem, we can build a Turing machine B where we can obtain its own
description, find out whether it accepts, and reverse the answer.

FALSE. Sipser does this in Chapter 6 in so many words, but he is doing it under the assumption
that the halting problem is decidable. If we could do this, we would have a contradiction.



Final Exam SOLUTIONS 1-3

2. (5 x 6 points) Justified True/False Questions. For each of the following questions, indicate
whether it is TRUE or FALSE, and provide a brief justification (i.e. either a proof or a counterezample).

(a)

The language X = {(M) : M is a single tape TM and there exists a number k such that M never
moves right past the k’th cell, on any input} is not TR.

FALSE. It is TR because we can successively test for each k whether M runs within k steps on each
input string of length < k, since letters after the first k are never seen. We run each computation
with a clock, until we accept, reject, tries to go too far right, or runs until we know that it is in a
loop.

The language X from Question 2(a) is TD.

FALSE. We show Ary <, X. Given an input (M,w), we make a machine N that erases its
input and runs M on w, with two changes. If the computation of M on w rejects, N runs to the
right forever. Also, it keeps a marker to the right of the input, and moves it one space to the right
every for every step of M ’s computation. In this way, if the computation of M on w never halts,
N is notin X. If M does accept w, N uses a fixzed amount of space on any input, and thus N is
in X.

Let f be the function that takes a binary number and outputs its unary representation. Then f
is a polynomial-time computable function if and only if P = NP.

FALSE. This function f cannot be polynomial-time computable no matter whether P = NP. Since
its output is size 2™ when the input size is n, it cannot complete its computation in polynomial
time.

On Homework #2, we proved the given any directed graph G and any nodes s and ¢, we can
construct a grammar whose language is non-empty if and only if there is a path from s to t.
Then, assuming that this construction can be carried in logspace, and if the language Fc gy were
in the class L, it would still be possible that L is a strict subset of NL (assuming L # NL).

FALSE. We know that REACH is complete for NL under log-space reductions. The result of
Question 6 lets us map any directed graph to a grammar, proving REACH <p Fcpy, as long as
we know that the reduction can be computed in log-space. The latter is true because the description
of the grammar can be produced by loops over i, j, and k, checking G for each edge to see whether
it is there. If Ecpr were in L, downward closure of L under log-space reductions would put an
NL-complete language into L, proving L = NL.

If every language in the class P can be decided by a polynomial-size log-space uniform family of
circuits, then L = P must be true, even assuming L # P.
FALSE. The statement that P is contained in Ur-PSIZE is true unconditionally, while L = P is

unknown and here we are assuming it to be false. I was disappointed that hardly anyone recognized
this important definition that occurs here verbatim.



Final Exam SOLUTIONS 1-4

3. (10 points) MAX-2SAT. The language MAX-2SAT is the set of all pairs (¢, k) where ¢ is a 2-CNF
formula (a set of clauses, each the OR of one or two literals) and there exists a setting of the variables
making k or more of the clauses true. Prove that MAX-2SAT is NP-complete. (Hint: Reduce from
3-SAT. For any clause ¥ in the 3-CNF formula, with literals £, ¢, and /3, let ¢ be a new variable and
consider the ten 2-CNF clauses {¢1, la, {3, ¢, =€1V —ly, =1V b, —loV —l3, 01V —e, boV —e, €3V —c}. How
many of these clauses are satisfied if ¢ is satisfied? How many could be satisfied if ¢ is not satisfied?
Note that the list of clauses above is symmetric in ¢1, £2, and ¢35, which might make counting easier.)

If all three of the ¢;’s are false, we get four clauses if ¢ is true and siz if c is false. If exactly one of
the {;’s is true, we get six with ¢ true and seven with c false. If exactly two of the {;’s are true, we get
seven each way. If all three £;’s are true, we get seven with c true and siz with ¢ false. So if there are
m clauses in all in ¢, so that we have 10m clauses in ¢, we can pick the ¢’s to get Tm satisfied clauses
in Y if and only if the setting of the original literal satisfies ¢. This completes the reduction to show
3-SAT <, MAX-2SAT. It’s obvious that MAX-25AT is in NP, since we can use the setting making k
or more of the clauses as a certificate, and it’s easy to verify this in polynomial time. So MAX-25AT
is NP-complete.

4. (10 points) Bottleneck Sets. Let BOTTLENECK-SET be the language {(G, s,t,S) : G is a directed
graph, s and ¢ are nodes, and for any node z in G, (there is a path from s to ¢ without using z) if and
only if x ¢ S }. Hence S is exactly those nodes that can be deleted, individually, to prevent the path
from s to t. Prove that BOTTLENECK-SET is complete for the class NL under log-space reductions.

To prove it in NL, we must prove that there is a path without x whenever x € S, and that there is
no path without r whenever x & L. We can guess and verify the paths that should be there, and use
Immerman-Szelepczenyi to guess and verify the absence of the paths that should not be there. For the
hardness, we can reduce the complement of REACH to BOTTLENECK-SET by mapping (G, s,t) to
(G, s,t,S), where S contains all the nodes.

5. (10 points) Equivalence of Regular Expressions. Prove that the language FQgrpc is PSPACE-
complete under poly-time reductions.

We first use poly-time reductions to convert REG to NFA. For the hardness result, we quote the result
that ALLNFa is hard, and prove ALLnpa <p EQNFa by noting that the former is a special case of the
latter. This argument is complicated by the fact that the computation graph involved in our reduction
(from a generic PSPACE machine) is exponential size. We can guess a string, though, without writing
it down, and guess its computation path through the computation graph while remembering only one
node of the graph at a time.

To show membership in PSPACE, we follow Example 8.4 in Sipser to show that the complement of
EQnra is in NPSPACE, by guessing a string w and running the two corresponding DFA’s on w,
implicitly one time step at a time, to show that one is in the language of one DFA and the other is
not. This uses polynomial space because we can maintain two DFA states (there is one bit per state
of each of the two NFA’s), and the length of w is polynomial. Most of you claimed that the regular
expressions could be converted into equivalent DFA’s in poly-time, which is provably false because those
DFA’s have exponential size.



Final Exam SOLUTIONS 1-5

6. (10 points) Rotational Closure. If U is any language, the rotational closure of U, called RC(U),
is that set of all strings w such that there exist strings « and y, w = yz, and zy € U. For example, if
U = {abc}, RC(U) = {abc,bca,cab}. A class C of languages is said to be closed under rotational
closure if RC(U) € C whenever U € C.

(a) (6) Prove that the class of regular languages is closed under rotational closure.
(b) (2) Prove that the class P is closed under rotational closure.

(c) (2) Prove that the class of TD languages is closed under rotational closure.

(a) If D is a DFA, we build an NFA N such that L(N) = RC(L(D)). This suffices to show that RC(U)
is reqular whenever U is regular. Given an input w, N first guesses a state p, then guesses when it has
read the string y. If 6*(p,y) is not a final state, it rejects. It then jumps to the start state i and reads
the rest of the string, x. If 6*(i,x,p) it accepts — otherwise it rejects. If w can be written as yx where
ay is in L(D), and makes the right guesses of y and p, it will accept. And if it accepts, it must have
read a string y and then x, such that xy was accepted.

(b) Given any input w, our algorithm computes each of the strings y and x for any parsing of w = yx.
It then tests whether xy is in U. If any of these strings xy are in U, it accepts, and otherwise it rejects.
The time is n times the time to test n strings of length n for membership in U — this is n times a
polynomial in n, which is polynomial.

(c) This proceeds exactly as for (b). Since we have a decider for U, we can run n different tests for
membership in U, and each one will terminate in a finite time.

7. (10 points) LINEAR-SAT. Define a linear TM to be a Turing machine M, with two tapes, and
a constant ¢ such that M always halts within cn steps on any input of length n. Define the language
LINEAR-SAT to be the set of all linear TM’s M such that there exists some string w that M accepts.
What is the complexity of the language LINEAR-SAT?

It is TR but not TD. It is TR because we can search forever for any string w, and we can test each
candidate in finite time. It is not TD because Ary <., LINEAR — SAT. For the reduction, on any
input (M, w), we design a linear TM that checks whether its input is an accepting computation history
of M on w. We can do this with two tapes and linear time, first moving one tape, and then both,
to keep putting one tape at the head position of configuration c;, and the other at the corresponding
position of ¢iy1.

The name “LINEAR-SAT” was deliberately misleading, suggesting that this might be NP-complete.
Perhaps a less misleading name would be “Eprnpar”. In the event, hardly any of you considered the

input size of this language — it is the description length of the linear-time TM rather than any string
running on it.



