
COMPSCI 501
Formal Language Theory

Semilecture #15: Review for Final Exam
David Mix Barrington
17 May 2023

1

Review For Midterm

•Regular and Finite-State Languages (2)

•CFL’s and PDA’s (1)

•Turing Machines and Computability (3)

•Miscellaneous Topics (1)

•P, NP, and NP-Completeness (4)

•Space Complexity (4)

•Circuits and NC (2)

2

Sets, Strings, Languages

•We start with sets, an alphabet, sets of
strings over that alphabet, and finally
languages.

•The decision problem for a language L is
to input a string w and return a boolean
telling whether w is in L.

•Our object of study is how difficult a
decision problem might be for some
language.

3

Sections of the Course
•In Part I, we look at classes of languages

that can be decided with particular
constraints: the regular languages and the
context-free languages.

•In Part II, we look at whether languages
can be decided or recognized by Turing
machines.

•In Part III (the rest of the course after this
exam) we will measure languages by the
resources needed to decide them.

4

Regular Languages

•We defined regular expressions, and
defined the regular languages to be those
that can be defined by regular
expressions.

•We then defined various kinds of finite-
state machines.

•Our two central results were Kleene’s
Theorem and the Myhill-Nerode
Theorem.

5

Kleene’s Theorem

•The class of languages recognizable by
DFA’s is equal to the class of regulars.

•From any regular expression, we can build
an equivalent NFA from it, then in turn
build an equivalent DFA by the Subset
Construction.

•From any DFA or NFA, we can build an
equivalent regular expression by using
State Elimination.

6

The Myhill-Nerode Theorem

•Given any language L, we can define an
equivalence relation such that u and v are
equivalent if for all z, uz ∈ L iff vz ∈ L.

•A language has finitely many classes in
this relation iff the language is regular.

•Given any correct DFA for a language, we
can minimize it to get an equivalent DFA
with the smallest possible number of
states.

7

Non-Regular Languages

•A consequence of the MN Theorem is that
we can prove a language L to not be
regular if there is an infinite set of strings
that are pairwise distinguishable for L.

•The Regular Language Pumping Lemma
is another way to prove languages to not
be regular. It’s less useful for this purpose,
but we will need to understand it in order
to understand the later CFL Pumping
Lemma.

8

Closure Properties

•A natural question is whether, if we apply
some operation to one or two regular
languages, the result is regular.

•The definition of the regular languages
tells us that they are closed under union,
concatenation and star.

•From Kleene, we know that they are
closed under complement and
intersection, because the recognizable
languages are.

9

Grammars and CFL’s

•A grammar is a way to define a language,
so that a string w is in L(G) if we can
derive w from the start symbol of G using
its rules. A context-free language is one
that can be defined by a context-free
grammar.

•Grammars can be put in Chomsky
Normal Form, which is useful if you are
starting with an arbitrary grammar.

10

Pushdown Automata

•A pushdown automaton is an NFA with a
stack. On one step, a PDA might read an
input, push or pop on the stack.

•The language of a PDA is the set of strings
that it could read from the input and end
in a final state.

•Our central result is that PDA’s and CFG’s
define the same class of languages.

11

TD and BU Parsers

•Given a grammar G, we can define a top-
down parser, a PDA P with the same
language.

•P begins by putting S on the stack,
applying rules to non-terminals on the
stack, and reading terminals from the
input to match terminals taken from the
stack. It finishes with an empty stack,
having read all of the input.

12

TD and BU Parsers

•The similar bottom-up parser works in a
way that is reversed in both time and
location.

•It reads input letters and shifts them onto
the stack, then applies reducing rules of G
backward, until it creates S onto the stack.

•It can only accept by removing this S from
the stack after shifting all the letters.

13

Building a CFG from a PDA

•Although it’s not of practical importance,
we learned the proof that from any PDA,
we can construct an equivalent CFG.

•We first place the PDA into a normal
form, where it only accepts with an
empty stack and either pushes or pops
one letter at each step, never both.

•Our grammar has one non-terminal Apq for
every pair of states in the PDA.

14

Building a CFG from a PDA
•The non-terminal Apq generates any

strings that can be read by the PDA when
it starts in state p with an empty stack and
finishes in state q with an empty stack.

•Any computation of the PDA with more
than one step can be broken down into
smaller computations.

•We either return to the empty stack in the
middle, or we push a letter that we pop at
the end.

15

Proving Non-CFLness

•We can prove various languages to be
non-CFL’s by using the CFL Pumping
Lemma.

•Any CFL L has a constant p such that any
string w ∈ L, with |w| ≥ p, can be
divided into strings u, v, x, y, z such that
|vy| > 0, |vxy| ≤ p, and for all naturals
i, uvixyiz is in L.

16

Proving Non-CFLness

•We proved this lemma by using surgery
on parse trees. Any correct parse tree for
w can be altered to make a correct parse
tree for these new strings.

•To prove that L is not a CFL, we choose a
long string w in L, and show that any
possible division of w into uvxyz must
either fail to pump up or pump down.

17

The Chomsky Hierarchy

•A linear bounded automaton acts like a
Turing machine, but does not have access
to tape beyond the amount needed for its
input.

•We also looked at unrestricted
grammars, which can generate exactly
the set of languages that are recognized
by Turing machines.

18

Turing Machines
•We saw things that a Turing machine can

do, starting with copying strings,
comparing strings, counting, and so forth.

•We saw that our familiar programming
techniques could (in principle) be adapted
to this setting.

•We can describe Turing machines
formally, at implementation level, or at
high level. The latter amounts to a proof
that a formal description exists.

19

Variants of TM’s

•We proved the Multitape Theorem, that
any Turing machine with multiple tapes can
be simulated by a single-tape machine.

•With this we were able to simulate a non-
deterministic machine with an ordinary
one, though at enormous cost in time.

•The language of an NTM is the set of all
strings that are found by an exhaustive
search.

20

Variants of TM’s

•We also defined enumerators — machines
that take no input, but put a succession of
strings onto an output tape, such that the
strings that appear are enumerated.

•A language L is the language of some Turing
machine iff it can be enumerated.

•A language can be decided by a Turing
machine iff it can be enumerated in order.

21

TD and TR Languages

•A Turing-recognizable or TR language L
is one where there exists a Turing machine
that accepts any string w iff w ∈ L. If w ∉
L, the machine may either reject or fail to
halt.

•A Turing-decidable or TD language L is
one where there exists a Turing machine
that accepts all strings w such that w ∈ L
and rejects all strings such that w ∉ L.

22

TD and TR Languages

•We proved the TD/TR Theorem, which
says that a language is TD iff it and its
complement are both TR.

•A Turing-decidable or TD language L is
one where there exists a Turing machine
that accepts all strings w such that w ∈ L
and rejects all strings such that w ∉ L.

23

TD and TR Languages

•One direction is easy — any TD language
is TR, and the complement of a TD
language is also TR.

•For the other direction, we need to use
dovetailing to run two processes in
parallel. If we have a recognizer for
language L and a different one for L-bar,
we can run both in parallel and one will
be sure to eventually halt.

24

Decidable Languages

•We’ve defined a number of languages
about other computing systems. For
example, the language ADFA is the set of
pairs (D, w) such that D is a DFA, w is a
string over D’s input alphabet, and w ∈
L(D). Similarly we have ACFL and ATM.

•ETM is the set of Turing machines with
empty languages, and ALLTM is the set of
Turing machines whose language is Σ*.

25

Decidable Languages

•Most languages concerning regular
languages or DFA’s are decidable.

•Sipser proves that ACFL is decidable, and
we prevented the more practical
CKYLalgorithm to decide that.

•We proved that ECFL is decidable, but it
turns out that ALLCFL is not.

26

Undecidability

•Using the diagonal argument, we are
able to show that certain languages are
not TD.

•For example, if there were a Turing
machine M that decided ATM, we could
build a Turing machine that would accept
any string that is the encoding of a
machine that does not accept itself. This
is a contradiction.

27

Undecidability
•So ATM cannot be TD. Since we know that

it is TR, it must fail to be co-TR.

•Other languages like ETM and ALLTM are
easily adapted to show them to be
undecidable.

•For example, given any machine M and
string w, let R be the machine that erases
its input and runs M on w. If we could tell
whether R were in ETM or ALLTM, we could
decide whether M accepts w.

28

Accepting Computation Histories

•The method of accepting computation
histories lets us show some problems
about other computation models to be
undecidable.

•A configuration is a string that represents
the state of a Turing machine at one step.
A computation history is a sequence of
configurations where each succeeding one
follows from the previous by the rules.

29

Accepting Computation Histories
•Once we start the machine, the remainder

of the computation history is determined,
since the machine is deterministic.

•If the machine accepts its input, there will
be an accepting computation history,
proving that the machine accepts that
string.

•But testing the validity of an alleged ACH
is generally easier than finding whether
one exists.

30

Accepting Computation Histories
•Recall the LBA, which is like a Turing

machine but is limited to its original tape
space. If we get an alleged ACH, we can
run an LBA on it to see whether it is valid.

•The question of whether M accepts w is
equivalent to whether some particular
LBA has any string that accept.

•So if we could decide ELBA, we could solve
this undecidable problem, so ELBA is
undecidable itself.

31

Accepting Computation Histories
•Similarly, with some work, we can show

that the set of strings that are not ACH’s
form a CFL, as long as we reformat the
computation histories to alternate
between forwards and backwards.

•To fail to be an ACH, it must either (1) fail
to start with q0w, (2) make an incorrect
step from one configuration to the next, or
(3) fail to finish with the accepting
configuration. (1) and (3) are regular,
and (2) is a CFL.

32

Post’s Correspondence Problem

•PCP is a simple undecidable problem using
ACH’s.

•A PCP instance is a set of dominoes, each
with a non-empty string on top and bottom.

•A match is a sequence of dominoes such that
the concatenation of the top strings and the
concatenation of the bottom strings are
equal. The PCP problem is to determine
whether a match exists in the instance.

33

Post’s Correspondence Problem

•With some care, we can set up a given
instance such that any match in it must be
derived from an ACH of some machine M
and some string w.

•At any given time, there is one configuration
hanging over the two strings. The only way
to continue toward a match is to copy the
string and make a new hanging string that
has to be the next configuration of M.

34

Mapping Reductions

•A useful way to organize undecidable
results is with mapping reductions. If A
and B are any two languages, A ≤m B is
true if there exists a computable function f
such that for any string w, w ∈ A iff f(w)
∈ B.

•A computable function is one where there
is a Turing machine that takes any input w
and always halts with f(w) on its tape.

35

Mapping Reductions
•The relation A ≤m B is transitive and is

closed downward for classes like TD, TR,
and co-TR.

•Thus if we know that A is not TD, for
example, and A ≤m B is true, then B
cannot be TD. Similarly, if A is not TR,
then B cannot be TR.

•But remember that the function f must
take true instances of A to true ones of B,
and vice versa.

36

Mapping Reductions

•Earlier we saw a function f that took an
instance (M, w) of ATM and mapped it to a
machine R that erases its input and runs
M on w. This function is computable.

•This gives us reductions ATM ≤m ETM-bar
and ATM ≤m ALLTM.

•As with NP-completeness, we can define a
language A to be TR-complete if it is TR
and if B is any TR language, B ≤m A.

37

The Arithmetic Hierarchy
•The Arithmetic Hierarchy is a class of

languages where each one can be described
using first-order logic.

•We are allowed to use TD predicates,
boolean operators, and ∃ and ∀ quantifiers
over strings.

•If the formula is in prenex form, we can
classify it as being “Σi” or “∏i”, where the “i”
means how many levels of quantification we
have and Σ means starting with ∃ and ∏
means starting with ∀.

38

The Arithmetic Hierarchy
•Here’s an example. Let the language MIN

consist of every Turing machine M such that
there is no shorter machine that has the same
language as M.

•We can write “M ∈ MIN” as ∀C: (|C| < |M|) →
∃w: (w ∈ M) ⊕ (w ∈ C).

•But “w ∈ M” is not a TD predicate. We have to
something like “∃h: ACH(M, w, h)” using
acceptation histories.

•Using this to decode, we can put MIN in the AH.
39

The Recursion Theorem

•Sipser shows a way to build (at a high level)
a Turing machine that prints its own
description. This is also called a quine, and
in the slides we included a Java version.

•The Recursion Theorem says that if t is any
two-argument function on strings defined by
a Turing machine (which may or not be
computable — it may be a partial function)
there exists a machine R such that for any
string w, R(w) = t(R, w).

40

The Recursion Theorem

•The proof for quitting uses an indirect way
to specify a string, so that the resulting string
turns out to be the exact description of the
string itself. The proof for the Recursion
Theorem is also similar.

•To use the Theorem in practice, you can
include instructions to “obtain your own
description” in your code.

•This is a good way to create viruses.
41

Kolmogorov Complexity

•We can classify strings by how many bits
we need to specify the string.

•One way to do it is to simply quote the
string, so that if it was n bits long, we will
need n + c bits to do it that way.

•But if there is a regularity in the string,
you might be able to specify it with fewer
bits.

42

Kolmogorov Complexity
•If we can define a machine M and a string

u such that M, running on u, halts with w
on its string, then we have a description
for w which is (M, u).

•The Kolmogorov complexity of w is the
length of its shortest description.

•Note that we have to account for the
format of “(M, u)” when we compute its
size. For example, we might use double-
letter notation for M and then write u.

43

Kolmogorov Complexity
•By a counting argument, we proved that

there exist strings of any length with K(w)
≥ |w|. We also showed that most strings
have K(w) ≥ |w| - c.

•Finally, we observed that this K function is
not computable, since to know a
description of w was the shortest possible,
we would have to rule out any shorter
string’s computation that later halted with
w.

44

Polynomial Time
•We now turn to time complexity, where

we count the number of Turing machine
steps needed to decide membership in a
language.

•We use asymptotic notation such as
O(f(n)) for time bounds, as in COMPSCI
311. The class DSPACE(f) is the set of
languages X such that there is a machine
M such that for any string w of length n,
M decides whether w ∈ X using O(f(n))
steps in the worst case.

45

Polynomial Time

•The set P is the class of languages that is
the union of the classes DSPACE(nk) for
all naturals k.

•That is, the worst-case time for the
machine to decide whether w ∈ X, where
|w| = n, is polynomial in n.

•This class is robust in that many other
models have the same “polynomial time”
class as for Turing machines.

46

Examples of Polynomial Time

•We saw that reachability and connectivity for
graphs can be decided in P.

•We can carry out the Euclidean Algorithm, so
that we can test relative primality for n-bit
number in time polynomial in n.

•We can decide the language ACFL in P using
the CYK algorithm, which uses dynamic
programming. We used a similar algorithm
on HW#4 to decide whether an element is a
possible product in a groupoid.

47

NP and Verifiers
•We turned to examples that we don’t know

how to solve in P, but which we could solve in
exponential time with a brute force search.

•These included HAM-PATH, CLIQUE, and
SUBSET-SUM.

•In each case, we could verify that a particular
string was in the language, given a witness
string, such as a Hamilton path for the an
instance of the HAM-PATH problem.

•Deciding whether a witness is valid for an
instance is a problem in P.

48

NP and Verifiers

•Going back to nondeterministic Turing
machines, we can define the class NSPACE(f)
to be the languages of NDTM’s that take at
most O(f(n)) steps on inputs of length n, no
matter how they make their choices.

•Similarly NP is the union of NSPACE(nk) for
all naturals n.

•It’s not hard to prove that a language is in NP
if and only if it has a poly-time verifiers. So
there are two alternative definitions of NP.

49

P Versus NP

•Clearly P is contained in NP, and we don’t
believe that P = NP, but for over 50 years the
mathematical community has failed to prove
either that they are equal or that they are not.

•As a practical matter, we can prove a large
class of languages to be outside of P unless P =
NP. These are the NP-complete languages.

•There are languages outside P that are not NP-
complete, unless P = NP, but examples of them
don’t come up so often.

50

P-Reductions, Completeness

•Just as we used mapping reductions in
computability theory to prove completeness, we
define poly-time reductions to prove
completeness in complexity theory.

•If X and Y are languages, X ≤p Y is defined to
be true if there exists a poly-time function f
such that for all strings w, (w ∈ X) ↔ f(w) ∈ Y.

•The classes P and NP are closed downward
under ≤p. This means that non-membership in
P is closed upward under ≤p.

51

P-Reductions, Completeness
•Just as ATM is naturally TR-complete under ≤m,

we can define a language ANP that is naturally
complete under ≤p.

•We define ANP to be the set of pairs (M, w, 1t)
such that M is an NDTM, w is an input to M,
and that M can accept w in at most t steps.

•Once we know that NP-complete languages
exist, we can find more interesting examples.

•The methodology to prove Y to be NP-complete
is to show Y ∈ NP, find a language X that is
known to be NP-complete, and show X ≤p Y.

52

CNF, SAT, and 3-SAT
•The methodology to prove Y to be NP-complete

is to show Y ∈ NP, find a language X that is
known to be NP-complete, and show X ≤p Y.

•To start this process, ANP is less useful than
some other languages we’ll now define.

•Recall conjunctive normal form in boolean
logic. A formula is in CNF if it is the AND of
clauses, each of which is an OR of literals.

•If the clauses each have exactly three literals,
the formula is said to be in 3-CNF.

53

CNF, SAT, and 3-SAT

•A formula is satisfiable if there exists at least
one setting of the variables making it true.

•The SAT formula is to input a formula and
output whether it is satisfiable.

•If the formula is in CNF, we have the CNF-SAT
language, and if it is in 3-CNF, we have 3-SAT.

•We will show that all three of these languages
are NP-complete, and these are the most
common sources for reductions to others.

54

The Cook-Levin Theorem
•We prove CNF-SAT to be NP-complete by taking

an arbitrary single-tape poly-time NDTM M and
construct a CNF formula (for a given input w)
that is satisfiable if and only if there is a way for
M to accept the string w. This reduces ANP to
CNF-SAT.

•The main idea is to construct a tableau, which
is a two-dimensional array of letters from the
tape alphabet (or states of M) as in Turing
machine configurations. Each row of the
tableau is a configuration at one time step.

55

The Cook-Levin Theorem
•A tableau represents a computation of M on w,

following the rules of M. If there is a valid
tableau that ends with the accept state, then w
is in L(M).

•We will represent each cell of the tableau by a
set of boolean variables. Choosing values of
these variables defines the letters of the cells.

•We will write a CNF formula that expresses that
the tableau represents a valid accepting
computation of M on w. If this formula is
satisfiable, then w ∈ L(M).

56

Conditions on a Tableau
•So we need to specify conditions on

making the tableau valid and accepting.

•We first need each of the variables for xi,j,c
to represent exactly one cell for xi,j.

•Then we need the time step for xi to
represent the proper start configuration.

•Then step i+i needs to be a possible
successor configuration from step i.

•Finally, step p(n) must be accepting.
57

Conditions on a Tableau

•Each of these conditions can be expressed
as a CNF formula. The most complicated
one says that each cell of the tableau can
possibly come from the three cells below
it, according to the rules of M.

•Every 2 by 3 window of the tableau must
be one that can occur in a valid
computation, and if all the windows are
legal, then the entire computation must be
valid.

58

Legal Windows

59

a q1 b
q2 a c

b a
b a

a a q1

a a b
a q1 b
a a q2

a b a
a b q2

b b b
c b b

(a) (b)

(f)(e)(d)

(c)

(a)head moves left, overwrites b with a c
(b)head moves right, overwrites b with an a
(c)head moves off right, overwrites hidden letter with a b
(d)no change at all
(e)head moves left from hidden position
(f) head was to the left, moved left, overwrote b with c

The Cook-Levin Theorem
•This argument proves that CNF-SAT is NP-

complete.

•To show that 3-SAT is NP-complete, we need to
show CNF-SAT ≤p 3-SAT.

•It’s not possible to turn a CNF formula into an
equivalent 3-CNF formula, but we can find a 3-
CNF formula such that one is satisfiable if and
only if the other is satisfiable.

•Each node of the CNF formula involves three
variables, and we can use 3-CNF clauses to say
that every node of the formula is correct.

60

Applying Cook-Levin

•Once we know that 3-SAT is NP-complete, we
can show more languages to be NP-complete.

•In each case we first show that our new
language X is in NP. Then we show 3-SAT ≤p X.

•On the next four slides we show some examples
of four such reductions.

61

3-SAT ≤p CLIQUE

62

¬x1

x2

x2

¬x1

x2

x1

x1

¬x2¬x2

φ = (x1∨x1∨x2) ∧ (¬x1∨¬x2∨¬x2) ∧ (¬x1∨x2∨x2)

We have edges if they are in different clauses, and the
nodes do not have opposite labels like x1 and ¬x1.

VERTEX-COVER is NP-C

63

x2 ¬x2

x2

x1

x1 ¬x2 x2

¬x1

¬x2

¬x1

¬x1x1

x2

We also have to cover the transverse edges. But if we pick a
good assignment for the variable nodes, we only need two
nodes from each clause node. This covers with only m+2h.

To cover all the variable and edges, we need one at least one
variable node and at least two of each clause node.

Zigzags and Zagzigs

64

s

t

x1

x2 ¬x2

¬x1

To touch all the nodes from s to t, we need to choose for
each variable a zigzag from xi to ¬xi, or a zagzig from
¬xi to xi. Choosing each zigzag or zagzig will correspond
to making an assignment of the n boolean variables.

SUBSET-SUM is NP-complete

65

 c1 ck
y1 | 1 0 0 0 … 0 | 1 0 … 0
z1 | 1 0 0 0 … 0 | 0 0 … 0
y2 | 1 0 0 … 0 | 0 1 … 0
z2 | 1 0 0 … 0 | 1 0 … 0
y3 | 1 0 … 0 | 1 1 … 0
z3 | 1 0 … 0 | 0 0 … 1
…
ym | 1 | 0 0 … 0
zm | 1 | 0 0 … 0
—————————————————————————-
g1 | | 1 0 … 0
h1 | | 1 0 … 0
…
——————————————————————————
t | 1 1 1 1 … 1 | 3 3 … 3

The 1’s under the c’s
are for the literals.

If clause cj has a
positive literal xi, we
put a 1 in row yi. If cj
has negative literal
for xi, we put 1 in zi.

The g’s and h’s can
fill from 1 to 3.

Defining the Hierarchy
•We earlier defined the Arithmetic

Hierarchy, with alternating quantifiers
with the base level as TD classes.

•So TR languages can be defined as Σ1

languages, so that A(w) = ∃x:R(w, x)
where R is a TD predicate.

•With a slight change in the we can define
the Polynomial Hierarchy, where the
base level is the class P, and the quantifiers
are bounded by polynomial length.

66

Defining the Hierarchy
•So a class in Σ1 for the polynomial

hierarchy is defined A(w) ↔ ∃x:R(w, x)
where R is a poly-time predicate and x is
bounded in polynomial length in w.

•Thus the time to compute R(w, x) is
bounded in poly time in the length of w.

•Similarly we can define a 𝚷1 class in the
polynomial hierarchy by B(w) ↔ ∀x:R(w,
x), with the same conditions. R is poly-
time, and the length of x is poly(w).

67

Examples of the Hierarchy

•NP is the class Σ1 of the hierarchy.

•co-NP is the class ∏1.

•The set of tautologies in boolean logic is
complete for ∏1.

•The set of minimal formulas in boolean
logic, the ones that do not have shorter
formulas equivalent to them, is complete
for ∏2.

68

ATM’s and the Hierarchy
•An alternating Turing machine is a

generalization of an NDTM. Along with
nondeterministic choices by some entity that
wants the machine to accept, there are also
universal choices that are made by some
other entity that wants the machine to reject.

•The game semantics is my preferred way to
explain the meaning of alternating TM’s.
Every state of the machine is a choice for
White, who wants it to accept, or for Black,
who wants it to reject. One or the other must
have a winning strategy.

69

ATM’s and the Hierarchy

•In an ordinary NDTM, the input is in the
language if and only if White, who makes all
the choices, can make the machine accept.

•If a language is in the complement of the
language of an NDTM, we can build an ATM
where White is trying to make the original
machine reject, but Black makes all the
choices, and White can only win if there is no
accepting path.

70

Defining PSPACE
•Let X be a language, and we have an

algorithm that can decide, whether any
string w of length n is in X, using at most
O(f(n)) total tape cells.

•Then X is in the space complexity class
DSPACE(f).

•The class PSPACE is the set of languages
that are in DSPACE(nk) for any constant k.

•This is the simplest space complexity
class, but it is a very powerful class.

71

Polynomial Space
•It’s easy to observe that P is contained in

PSPACE.

•But we can also decide a language in NP
using polynomial space. We simply carry out
the brute force simulation — the time is
terrible, but we have enough space to keep
track of which computation path we are
testing.

•Similarly we can show by induction that
every class Σk in the polynomial hierarchy is
contained within PSPACE.

72

Polynomial Space
•PSPACE is contained within exponential time.

If it runs more that the number of
configurations it has, we can shut it off.

•Sipser applies this idea to show that the
language ALLNFA is in NPSPACE. By
reasoning about the corresponding DFA of
our NFA, we know that if it doesn’t accept
everything, there must be a string of
exponential length that is not in L(N).

•With polynomial space, we can guess this
string if it exists, using the memory to verify
that each configuration follows from the next.

73

Logarithmic Space

•We now turn to smaller space classes, starting
with L, the languages that can be decided in
O(log n) tape cells on input of size n.

•This only makes sense if we get our input on
a read-only input tape, and only count our
read-write memory toward our space bound.

•A two-way DFA defines the class DSPACE(1),
where there is only constant memory other
than the read-only input tape.

74

Logarithmic Space
•We use “L” and “NL” to mean DSPACE(log n)

and NSPACE(log n) respectively.

•We can define {anbn: n ≥ 0}, or even {anbncn:
n ≥ 0}, in L by counting the letters in binary.

•In NL, we can solve reachability in a directed
graph. In O(log n) space, we can remember
one node number, verify that another node
has an edge to it, and jump to the new node,
forgetting the old one. If we can get to the
target node, then there was a path, and
conversely.

75

Logarithmic Space

•Of course we know that reachability is in P,
using DFS or BFS, but these use linear space
and so the NL algorithm is quite different.

•Any language in L or NL is also in P.

•Given a space-bounded machine, we can
make its configuration graph, with a node
for each configuration and an edge to any
node for a configuration we could to go in
one step. In a log-space machine, there are
only a polynomial number of configurations.

76

Logarithmic Space

•In a machine for L, we can start at the node
for the start configuration, follow the unique
edge from every node, and see whether we
reach an accepting configuration.

•In a machine for NL, we want to know
whether there is any path from the start
configuration to the accepting one. In P, we
can answer that using DFS or BFS. So NL ⊆
P.

77

Savitch’s Theorem

•We think that NP is a much larger class than
P, as we don’t know how to decide an NP
language deterministically with less than
exponential time.

•But NL seems to be closer to L. Savitch’s
Theorem says that NL is contained in
DSPACE(log2n). This is an important use of
dynamic programming.

•How well can we solve reachability if our
goal is to minimize deterministic space?

78

Savitch’s Theorem

•How well can we solve reachability if our goal is
to minimize deterministic space?

•Let PATH(c, d, t) be a predicate saying that there
is a path of at most t steps from c to d.

•We can easily find PATH(c, d, 1) as a base case.

•We can find PATH(c, d, 2) by testing any node e
to see whether both PATH(c, e, 1) and PATH(e, d,
1) are both true.

79

Savitch’s Theorem

•Similarly, we can attack the problem of PATH(c, d,
t) by recursively testing, for each node e, whether
PATH(c, e, t/2) and PATH(e, d, t/2) are both true.

•Our recursion will need a recursion depth O(log
t). In an NL machine, the size of the graph for
which we want reachability is polynomial, so the
recursion depth is O(log n).

•In the recursion, our stack frame will need O(log
n) bits for each recursive call, since we must
remember the node e, which is O(log n) bits.

80

Savitch’s Theorem

•The time for this algorithm is terrible, O(nlog n) in
general, but it does test membership for NL in
DSPACE(log2).

•This generalizes, as long as f ≥ log n, to say that
NSPACE(f) ⊆ DSPACE(f2).

•A special case of this is that NSPACE(nk) ⊆
DSPACE(n2k), from which it follows that NPSPACE
= PSPACE.

81

Completeness for NL

•For it to make sense for a problem to be complete
for NL, we can’t use p-reductions because every
nontrivial language in P is ≤p reducible to any
other.

•Within P, we’ll define ≤L reductions, defined just
as with ≤p except that the function making w ∈ X
↔ f(w) ∈ Y is a log-space transducer.

•This is a machine with w on a read-only input
tape, O(log n) bits of read-write memory, and a
write-only output tape where it puts f(w).

82

Completeness for NL
•L-transducers are transitive! It’s not immediate

that if X ≤L Y and Y ≤L Z, then X ≤L Z, because
you a priori need too much read-write space to
hold the string in Y.

•The trick is, whenever you need a bit of the string
in Y, is to recompute it from w, going back to the
start of the computation that defines it. We use
O(log n) space for each of the two computations,
and this is still O(log n) space.

•In practice, if there are only O(1) compositions,
you can think of the intermediate steps being in
read-write memory.

83

Completeness for NL

•Once we have the definitions, it’s pretty obvious
that the language REACH is NL-complete. We
know that it’s in NL. If we have an arbitrary NL
language, there is a log-space NDTM for it, and it
has a configuration graph with polynomially many
nodes. All we need to know is whether there is a
path from the start to final configuration.

•Why is this log space? We just have to construct
the configuration graph, which is just cycling
through all the possible configurations.

84

Completeness for P

•Having ≤L reductions lets us talk about
completeness for the class P.

•We could define a language AP of the tuples (M, w,
1p) such that M accepts w in at most p steps. It’s
pretty clear that any language in P can be reduced
to AP using ≤L reductions.

•But a more interesting P-complete language brings
us to circuit complexity.

85

Circuit Complexity
•A boolean circuit is similar to a boolean formula,

but gates are allowed to fan out to multiple gates.

•The size of the circuit is the number of nodes, and
its depth is the length of the longest path from the
output node to any input node. An input node
gets the value of one bit of the input string.

•Every node, except for an input node, is computed
from a binary AND gate, a binary OR gate, or a
unary NOT gate. The directed circuit of the graph
must be acyclic — we cannot have later gates feed
into earlier ones.

86

Some Circuit Examples

87

x y

∧

¬ ¬

∧

∨
x ⊕ y

Some Circuit Examples

•We can construct a poly-size circuit for any
regular language. We can just simulate a DFA,
using a constant number of gates for each time
step, using height O(n) and size O(n). (And
this is contained in L and NC1.)

•We can construct a poly-size circuit for any
CFL, using the CYK algorithm. In a result we
will probably not get to COMPSCI 501, we can
show that the class of CFL’s is bounded within a
class that is (probably) not a strict subset of P.

88

The Circuit Value Problem
•Let C be a circuit with inputs x1,…,xn and with

p(n) total nodes.

•The Circuit Value Problem is to take a
boolean assignment of the input values and
find the value of the input node.

•It should be pretty clear that CVP is contained
in the class P. If we have a Turing machine,
with polynomial space available, all we need to
do is evaluate each node in the right order
until we have the value of the input node.

89

Cook-Levin Again

•In order to prove that CVP is complete for P,
we need to take an arbitrary language X in the
class P, and prove X ≤L CVP.

•So given an input w and a Turing machine M
and a polynomial time bound p(n), we need to
create a circuit of polynomial nodes, with
w1,…,wn as the inputs, such that w ∈ X iff the
output of the the circuit on the input gives 1.

•And we have to construct the circuit from w
using a log-space transducer.

90

Cook-Levin Again

•Fortunately we have already done this work.

•We can even simplify the Cook-Levin tableau
construction, because our poly-time single-tape
computation is deterministic.

•Lay out a square tableau of configurations for
each row of p(n) cells and states.

•Then we have one configuration for each of the
p(n) time steps. To compute a cell for position
x and time step t, we can do this with a circuit.

91

Cook-Levin Again

•Then we have one configuration for each of the
p(n) time steps. To compute a cell for position
x and time step t, we can do this with a circuit.

•If we have cells (x-1,t-1), (x, t-1), and (x+1,
t-1), each encoded as enough boolean nodes,
we can take this input and feed into into a
circuit to get the result of cell (x, t).

•Note that we will need multiple fan-out, since
for example (x-1,t-1) must also feed (x-1,t-1).

92

Complete Languages for PSPACE
•It’s pretty easy to prove that some language

exists that is complete for PSPACE. We
need X to be in PSPACE, and that Y ≤p X for
every Y in SPACE.

•Let APS be the language (M, w, 1t) such that
M accepts w using at most t tape cells.

•If Y is in PSPACE, let Y = L(MY), where MY
is bounded by p(n) space.

•Then we map w to (MY, w, 1p(n)). So w ∈ Y
iff (MY, w, 1p(n)) ∈ APS.

93

Quantified Boolean Formulas
•Our more interesting natural PSPACE

complete language is defined with
quantified boolean formulas.

•We start with n boolean variables,
combine them with boolean operators,
and quantify boolean variables using ∃
and ∀ quantifiers.

•One example of this is satisfiability, when
we write a boolean formula and then bind
each variable with ∃ quantifiers.

94

Solving TQBF in PSPACE
•So if the formula begins as ∃x1:φ(x2,…,xn),

we can decide whether the sentence is true.

•We try setting x1 to 1, accept if the result
becomes 1, then otherwise check x1 = 0.

•Checking these two results are each
recursive. The space we need for the
computation is one bit for x1, then whatever
space we need for the rest of either of the
two computions.

•We only need linear space to finish it.
95

Reducing PSPACE to TQBF

•So now we are left with the harder half of
the proof, where we have a language A in
PSPACE and we need to prove A ≤p TQBF.

•Here’s an approach that doesn’t work.

•Design a a tableau as for Cook-Levin, with
width O(nk), assigning boolean variables
and expressing that we have an accepting
tableau. The problem is that the height of
the tableau is exponential in n.

96

Reducing PSPACE to TQBF
•We can represent the configuration at any

time step by O(nk) = bits.

•Let any two configurations and let t be any
number up to the exponential time bound.

•We can compute, as for Cook-Levin, whether
the machine can take it from configuration c
to configuration cʹ in one step.

•How can we determine whether M can take
c to d in at most 2p(n) steps?

97

Expressing Paths by Savitch
•Suppose we express the statement φc, d, t

that says we can go from c to d in at most t
steps.

•We can write φc,d,t = ∃e:[φc,e,t/2 ∧ φe,d,t/2].

•Of course e is not a boolean, so we are
writing ∃e1…em:[φc,e,t/2 ∧ φe,d,t/2].

•That’s ok, but there’s a problem with when
we double the boolean formula poly-many
times. We don’t have a poly-length TQBF
formula, so we can’t map ≤p to it.

98

Saving Formula Space

•So far, though, we haven’t used both types
of quantifiers.

•To say that both φc,e,t/2 and φe,d,t/2 are true,
we can write ∀c1,c2:{(c,e), (e,d)}φc1,c2,t/2.

•This can be written in boolean operations as
[((c1↔c)∧(c2↔e))∨((c1↔e)∧(c2↔d))] →
φc1,c2,t/2.

•However we pick c1 and c2, these conditions
make those two φ statements both true.

99

Saving Formula Space
•Our TQBF formula reduces the 2p(n)-step

formula to a 2p(n)/2-step formula by adding
∃e1…em:∀c1c2:(booleans), which is
polynomial length.

•This makes the entire TQBF formula still in
polynomial length, since we have p(n)
rounds.

•More precisely, the formula length is
O(p2(n)), since we have O(p(n)) ∃
quantifiers, and O(p(n)) rounds in all.

100

The Formula Game for TQBF

•We’ve proved that the language TQBF, of
the set of quantified sentences formulas
that evaluate to true, is complete for
PSPACE.

•Here is a natural interpretation of TQBF as
a formula game.

•Given the quantified formula in prenex
form, the game proceeds by the players
choosing variables.

101

Generalized Geography
•Here is another game that turns out to be

PSPACE-complete as well.

•Sipser first describes it as generalized
geography, where the game board is a set of
cities.

•The first player chooses a city. Each succeeding
city must begin with the same letter as the last
letter of the previous city.

•So if you start with AMHERST, I could move
TURNERSFALLS, and I could follow with SALEM.

102

Formula Game ≤p GG

•We now have the tools to show that the GG
game is also PSPACE-complete.

•We’ve shown that GG is in PSPACE, and we will
show that the Formula Game reduces to GG.

•Given an arbitrary QBF formula, we’ll assume
that the part after the quantified parts are in
CNF form. (The argument for TQBF
completeness works under this assumption, as
we can check.)

103

Formula Game ≤p GG
•We set up our GG graph with

a start node, where White
will make the first move,
and the second move is third
moves are forced.

•Then Black will make a free
choice in the next move and
the next two are forced.

•They will alternate, each
choosing one node.

104

B

W

W
∃x1

∀x2

∃x3

x1 ¬x1

¬x3x3

¬x2x2

Formula Game ≤p GG

105

B

W

W
∃x1

∀x2

∃x3

x1 ¬x1

¬x3x3

¬x2x2

If the boolean part is true, then
every clause is satisfied. We let
Black pick which clause, and White
tries to pick a true literal.

B move,
start

c1

c2

c3

¬x2

x1

x3

W move,
for clause

Poly-Time Games in PSPACE
•In general, when we play a game with a

polynomial time bound, the winning
strategy can be determined in PSPACE.

•You recursively find who has the strategy,
with the base case being the final position of
the game, and each step recursing from time
t to time t+1.

•Because the time bound is polynomial, you
only need room in the method stack for
polynomial space. (Each stack frame uses
only polynomial space.)

106

Log-Space Games in P
•But if we play for polynomial time on a

game board that remains fixed, where we
keep track of a only constant number of
positions on the board, we can find winning
strategies in P (poly-time).

•A position in the game is recorded by O(log
n) bits, if the fixed board is stored in read-
only memory. So there are only
polynomially many configurations in the
game.

107

A P-Complete Game

•The circuit game starts with the position in
the output node of the circuit.

•When the current node is an OR gate, White
moves to an input of the current node. If
the current node is an AND gate, Black
move to an input of the current node.

•When we reach an input literal, White wins
the game if it is 1 and Black wins if it is 0.

108

A P-Complete Game
•Now remember that the players have infinite

computational power available. So each one
of them knows exactly which node will
evaluate to, given the input values and the
fixed circuit.

•So if the input node will evaluate to 1,
White should have a winning strategy, and
she does. If it is her move, there must be an
input that evaluates to 1. If it is Black’s
move, then every move must evaluate to 1.

109

Non-Reachability in NL
•Using our knowledge about completeness,

we’ll prove the result by showing that non-
reachability in directed graphs is in NL.

•We need a nondeterministic procedure,
with input (G, s, t), that can accept its input
if and only if there isn’t a directed path
from s to t.

•The key method is to count, for any natural
d, the number of nodes that can be reached
from s with at most d edges.

110

Inductive Counting for NL
•Let Nd be the number of nodes that have paths of

length of d or fewer edges, starting from s.

•We know that N0 = 1, since only s can be reached
from itself with no edges. What about N1?

•We can find it deterministically in L by counting
the edges out of s. But getting N2 gets harder. If
we cycle through all the two-step paths from s,
we have to make sure we deal with multiple
paths to the same place.

•Here’s where we can use nondeterminism.
111

Inductive Counting for NL
•If there is a path of length at most d from s to x,

our nondeterministic machine can verify this by
taking a path from s to x, remembering how
many edges it has taken. As in our NL algorithm
for reachability, it only needs to remember the
current node, and the number of edges, in its log
space memory.

•Suppose I know the value of Nd. I can cycle
through all the nodes, and for each one I guess
whether it has a path of length at most d from s.
If it is, I verify this fact.

112

Inductive Counting for NL
•Suppose I know the value of Nd. I can cycle

through all the nodes, and for each one I guess
whether it has a path of length at most d from s.
If it is, I verify this fact.

•If, when I’ve gone through all the nodes, unless
I’ve guessed and verified Nd of those nodes, my
procedure fails. There exists a sequence of
correct guesses, for the correct value of Nd, and
we can consider only runs of the procedure when
we find it.

113

Inductive Counting for NL
•Suppose I want to know whether a particular

node z has a path of length at most d+1 from s.

•If I go through this process to guess and verify the
Nd nodes at distance d, at the same time I can
decide whether there is a (d+1)-path to z.

•If z itself is one of my guessed nodes, then it does
have a path. Also, if any of my guessed nodes has
an edge to z, then z has a path. If neither of
these things happen, and the guessing was
correct, then z does not have a (d+1)-path.

114

Inductive Counting for NL

•I don’t have space to remember the nodes I’ve
seen, but I can remember how many nodes with
(d+1)-paths there are. (I’m doing the guess and
verify process again for each node I’m checking.)

•If all the guesses and verifications are correct, we
have used the value of Nd to compute Nd+1.

•By repeating this process, I will either get the
correct value of Nn-1 or my procedure fails.

115

NLBA’s and Context-Sensitive

•When Immerman and Szelepcsenyi proved their
result (and won the Godel Prize in 1995), part
of their fame was due to solving a problem older
than the formalization of NL and co-NL.

•We saw earlier that the context-sensitive
grammars define the class of languages we’ve
called NLBA’s, nondeterministic linear bounded
automata. These are Turing machines that are
limited to the read/write space used to store the
original input.

116

NSPACE(f) = co-NSPACE(f)
•If f is any space bound with f(n) ≥ log n, we can

apply the same argument to show that NSPACE(f)
is equal to co-NSPACE(f).

•(There are subtleties about whether f is space
constructible, but for convenience we will
assume that it is.)

•If M is an NSPACE(f) machine, then it has 2O(f)
nodes in its configuration graph. Let X be a co-
NSPACE(f) language, so that X-bar = L(M). All
we need to show w ∈ X is that there is no
accepting path on M with input w.

117

NSPACE(f) = co-NSPACE(f)

•If M is an NSPACE(f) machine, then it has 2O(f)
nodes in its configuration graph. Let X be a co-
NSPACE(f) language, so that X-bar = L(M). All
we need to show w ∈ X is that there is no
accepting path on M with input w.

•By the algorithm we’ve demonstrated, we can
nondeterministically test whether there isn’t such
a path using space log(2O(f)) = O(f). So
membership in X is in NSPACE(f) as well as X-bar.

118

ATIME(f) ⊆ SPACE(f)
•So in these two lectures we’ll present the

Meyer-Stockmeyer Alternation Theorem,
following Sipser’s argument in Chapter 10.3.

•In this lecture we’ll characterize a time-
bounded alternating TM (called an ATM,
potentially confused with an Automated
Teller Machine or Asynchronous Transfer
Mode).

•Let O(f(n)) be a time bound, with f(n) ≥ n.
Our first result will simulate ATIME(f) with
deterministic space O(f).

119

Recursion Again
•We’ve essentially seen this argument already with

the Formula Game of Lecture 12.2.

•We first alter the machine to add a clock, so that
every configuration has a time step.

•We want to compute the acceptance (or the
winning strategy) of every configuration c for
every time step t.

•If we know the result for of every node c
reachable on time step t+1, we can compute the
result for c.

120

SPACE(f) ⊆ ATIME(f2)
•For the other result in this lecture, we see how

well we can attack a deterministic space-bounded
problem using alternating time.

•We don’t actually prove that ATIME(f) =
SPACE(f), though we can come close.

•Remember that a computation with O(f) space
uses 2O(f) configurations. For either SPACE(f) or
NSPACE(f), we need to determine whether there
is a path from the start configuration to an
accepting one (or the accepting one if we prefer).

121

Savitch Again
•But we can solve this path problem using Savitch.

•We need to express the argument a bit differently
when we have alternation available.

•In game semantics, we will define the Savitch
game, where White will have a winning strategy
if the desired path exists, and Black wins if not.

•We begin with White claiming the path exists, for
a number of edges at most t. White’s move is to
claim that node a to b exists because there is a
paths of length at most t/2 from a to c and c to b.

122

ASPACE(f) ⊆ DTIME(2O(f))
•Let’s first consider the class ASPACE(f),

again where f(n) ≥ log n.

•In the game semantics, we have a game
where White wants to make the machine
accept and Black wants it to reject, and
each state of the machine is assigned to one
of the two players to choose the next move.

•The first question, as always with space
bounded classes, is the number of
configurations that the machine has.

123

Configuration Graphs Again
•There are cf(n) tape cells in the read-write memory,

n locations in the read-only input, O(f(n)) possible
head positions in the read-write memory, and
O(1) possible states.

•Multiplying this out, again since f(n) ≥ n, there
are 2O(f) total configurations.

•As we’ve seen we will use a marking algorithm to
determine the winning strategy.

•We can also put a clock on the machine, so that
there are no cycles in the directed graph of moves.

124

DTIME(2O(f)) ⊆ ASPACE(f)
•So now we turn to the remaining piece of the

Alternation Theorem, using alternating space to
determine the result of a DTIME(2O(f))
computation.

•We can view the computation as a tableau, with
2O(f) cells in each row, and 2O(f) total rows.

•But we are now given only f(n) total space.

•We don’t have room to write the tableau or even
a row if the tableau, but we can write a pointer
into the tableau.

125

A Circuit-Like Game
•Also, unlike the tableau in the Cook-Levin

Theorem, each cell is deterministically defined by
the three cells next to it in the prior row.

•We’ll define our game where the position at any
time is one cell of the tableau. We’ll use the O(f)
space given to us to keep track of where we are.

•The start of the game is the final cell of the
tableau, where White claims that the contents of
this cell is the accepting state. At any given time,
White is maintaining a claim of the current cell.

126

A Circuit-Like Game

•So at a move at some generic row and time step
for a cell, White first moves by naming the three
adjacent cells at the prior step. Unless these
three cells verify White’s claim about the original
cell, White loses the game immediately.

•Black then picks one of the three cells, and the
game continues with White claiming the contents
of that new cell based on her prior moves.

•Let’s prove that the player has the right strategy.

127

A Circuit-Like Game
•What if the DTIME machine accepts? In this case

White can make a correct claim at the start of the
game. White can just tell the truth, claiming the
three adjacent cells have the contents that they
really have in the actual computation. At the
end, White’s final claim matches the input.

•What if the DTIME does not accept? Then White
is lying about the final cell. At every new move,
White must lie again about the three new cells,
since they have to agree with her false claim .

128

A Circuit-Like Game

•So at least one of White’s claimed three cells must
disagree with the actual result of that cell in the
original computation. All Black needs is to
challenge the lie.

•At each step, then, White must maintain an
incorrect claim about the current cell.

•Once we reach the input level, White must now
be claiming an incorrect t = 0 cell, and will lose.

129

Circuit Classes Again

•If we allow ourselves a polynomial number
of computing elements, we can put one on
each of the nodes of a polynomial-size
circuit.

•The parallel time of the resulting circuit
depends on the depth of the circuit.

•The output value of any given gate cannot
be computed until its input values have
already been computed.

130

Circuit Classes Again
•A given circuit is parametrized by both its

size, the number of gates, and its depth,
which is the longest path (in its directed
graph) from any input node to the output
node.

•The depth will in general be proportional to
the time to compute the circuit, given a
processor for each gate.

•So we can study what size and depth
bounds we can find for different problems.

131

Uniformity for Circuits
•We can define complexity classes for languages, in

terms of size or depth, just as we do this for time
and space for Turing machine computation.

•But there are some fundamental complications.

•If we design a boolean circuit, we have to specify
its number of inputs. (Unlike a Turing machine,
for example, a single computer can operate on any
number of inputs.)

•We thus define a circuit family where Cn is a
circuit for each number n of inputs for each one.

132

Uniformity for Circuits
•We could then define the class PSIZE, for example,

so that a language X is in PSIZE if there exists a
circuit family such that for each circuit Cn, for
every bit string w in Σn, w on Cn returns 1 if and
only if w is in X.

•But there’s a problem with this definition.

•Consider the language, say, {1n: n is in ATM in
binary}. This is clearly not decidable.

•But the size complexity of this language is O(1)!

133

Uniformity for Circuits
•If we want to define an “easy to compute”

language in terms of circuit size or depth, we also
need a new condition called uniformity.

•For any particular circuit Cn, there must be a way
to specify the circuit.

•For example, we define the class UP-PSIZE, for
poly-size uniform poly-size circuits, to be the
language X such that (1) Cn has size nO(1) for each
n, (2) there is a poly-time algorithm that outputs
the circuit Cn, and (3) ∀w: Cn(w) ↔ w ∈ X.

134

UL=PSIZE = UP-PSIZE = P
•Let’s prove that both these versions of uniform

circuit complexity for poly-size are the same
class, because both equal P, for poly-time.

•Let X be in UP-PSIZE, and if I want to know
whether w ∈ X, with |w| = n, how can I tell?

•I can construct the circuit Cn, then evaluate the
result Cn(w), using the Circuit Value Problem we
showed to be in poly-time.

•These two poly-time operations are in P. And
since L ⊆ P, UL-PSIZE is also contained in P.

135

The Class NC
•So now that we can define uniform circuit classes,

we are ready to define our class of languages that
are highly parallelizable.

•The class NC is the subset of UL-PSIZE that has
circuits of only poly-log depth, still with poly-size.

•Remember that poly-log(n) means (log n)O(1), any
constant power raised to O(log n). Asymptotically,
any poly-log function is o(n𝜺) for any 𝜺 > 0.

•It’s perhaps surprising that lots of interesting
languages are in this seemingly small class.

136

The Class NC0

•The class NC0 consists of fan-in circuit
families of depth O(1).

•These are exactly the functions which
depend on only O(1) of the input values.

•It’s easy to rule out languages from NC0,
as long as we can show that the output
depends on an unbounded number of the
n input values as n increases.

137

The Class AC0

•In the class AC0, any output bit may depend on
any input bit.

•Here’s an example of an AC0 function — take
two n × n boolean matrices A and B, and
output the product AB. (In a decision
language, we could return one of the bits of the
product.)

•Since (AB)i,j is the OR of Ai,k ∧ Bk,j for all k from
1 to n, the computation uses only O(1) depth
using unbounded fan-in, one for OR, one for ∧.

138

The Class NC1, included in L

•The next class in the hierarchy is NC1, with
O(log n) depth, poly-size, and fan-in O(1).

•Here we start getting some interesting upper
bound results in this class.

•In the following lecture we’ll prove that any
regular language is in NC1.

•We can also do some interesting integer
arithmetic in NC1, like MAJORITY and binary
multiplication.

139

The Class AC1, containing NL
•Now we connect L and NL to the class

AC1. We’ll show that NL ⊆ AC1, with the
circuit family to be UL-uniform. (The
circuit family can be shown to be even
more uniform than that, given the right
definitions.)

•We remember that the PATH language (G,
s, t), where G a directed graph and s and t
nodes such that there is a path from s to t,
is complete for NL under L reductions.

140

PARITY in NC1

•The PARITY problem is to input n bits and
determine whether there are an even or
odd bits set to 1. The language PARITY is
{w: |w|1 is odd}, or {w: XOR of wi = 1}.

•As we mentioned, by a harder theorem,
this problem cannot be solved in AC0, even
if the circuit family can be totally non-
uniform. But it’s not hard to show that
PARITY is in NC1.

141

Regular Languages in NC1

•So it’s a natural question to compare the
“easy” languages, from our study of
regular languages, to other classes of
languages.

•What if D is a DFA, and X is the language
L(D). Can we build a circuit family with
polynomial size and O(log n) depth with
fan-in 2? It turns out that we can.

142

Integer Arithmetic in NC1

•As we showed earlier, we can add two
binary numbers in AC0, but not in NC0.

•What we’d like to do is iterated addition,
where say we are given n n-bit numbers
and want to compute their sum (in
n+logn bits, as it happens).

•This would be useful for two other
problems we’d like to solve: MAJORITY
and MULTIPLICATION.

143

MAJORITY and MULTIPICATION

•The MAJORITY problem is to take n bits
and ask whether there are more 1 bits
than there are 0’s in the string. (Ties are
not a majority of 1’s.)

•This can be done with iterated addition.
Just treat each bit as a number equal to 0
or 1, and compute the sum of these n
numbers.

144

A Trick for Iterated Addition

•But if we tried to add n numbers together
with the method we used to add two of
them, we would make a tree of depth
O(log n), which would get us depth O(log
n) if we used unbounded fan-in. The tree
of AC0 computations would require AC1.

•Using fan-in 2 to add two numbers, we’d
get a tree of NC1 operations to get NC2.

145

A Trick for Iterated Addition

•So here’s a trick. We change the
representation for numbers to signed
digit base four (SDB4). One
consequence is that there are different
strings to represent the same number.

•For example, 23ʹ2ʹ13 represents the
number 2⋅44 - 3⋅43 - 2⋅42 + 1⋅41 ⋅ 3⋅40 =
512 - 192 - 32 + 4 + 3 = 295. The same
number could be 112ʹ21ʹ = 256 + 64 - 32
+ 8 - 1 = 295.

146

Boolean Circuits and Formulas
•Remember that each node of a boolean

circuit is either an input gate or is computed
by a gate from one or more earlier
computed gates. Its fan-in is the number of
gates whose values are used.

•It is possible that every circuit has fan-out of
1, so that the circuit is a tree or a formula
instead of just a directed acyclic graph.

•It’s a natural question whether circuits
become weaker if they must be formulas.

147

Balancing Trees in NC1

•An arbitrary poly-size circuit could have very
large depth, almost as large as its depth. So
we’ll alter it somehow in this case to reduce
its depth while maintaining an equivalent
function.

•We’ll also simplify the circuit to have only
AND and OR gates, except for input gates for
literals (variables and negated variables).
You’ll consider on HW#6 how any poly-size
circuit can be put in this form.

148

Working Toward Balance

•We can now draw the tree
with h as g’s ancestor, with
w/4 ≤ w(h) ≤ 3w/4.

•We’ll now build a more
balanced tree, with slightly
greater size, but with the
same function as the original
tree.

•Here are some pieces.

149

h
e

g

g

g

¬h

h

0

1

Working Toward Balance

•Let’s convince ourselves that
the new tree has the same
function as the original tree.

•There are two cases when h
is true and when h is false.

150

h
e

g

gg ¬hh

01

∨

∧ ∧

Working Toward Balance

•Each of these four pieces has
weight ≤ 3w/4.

•The total weight is at most
4(3w/4)+5 = 3w+5.

•The new depth has added 3.
151

h
e

g

gg ¬hh

01

∨

∧ ∧

Alternating Logspace in P

•We saw that in the Alternation Theorem,
languages with unlimited alternation with
log space are exactly the languages in P.

•If we have no alternation in a log space TM,
we get the language L.

•What we’ll see today is what happens when
we add some alternation to a log space TM.

•This turns out to give us a spectrum of
classes from L through P, ranging across NC.

152

Constraints on AL Machines
•So how can we parametrize AL machines to

limit their amount of alternation?

•One natural method is to count the number
of alternations in the ATM computation.

•In the game semantics, we count every time
that a White move is followed by a Black
move, or vice versa. In the version with
existential states and universal states, we
count an alternation every time we change
from one state type to the other.

153

The General Result

•The two main theorems are:

•ATM’s with log space and O(login)
alternations are equivalent to ACi, for i ≥ 1

•ATM’s with log space and O(login) time are
equivalent to NCi, for i ≥ 2.

•We’re not going to prove this theorem here,
but we’ll tell you about some special cases,
and give an idea about how the proof works.

154

Solving Circuits with ATM’s

•But without the technical details, the main
idea of simulating circuits with alternation is
pretty much what we saw in the Alternation
Theorem, with the Circuit Game.

•We start the game at the output node.
When the current node is an ∨, White picks
a child of that node. When it is ∧, Black
picks a child. The game ends when at an
input, when White wins if the value is true
and Black if it is false.

155

Solving ATM’s with Circuits

•What if we have an ATM, with the time or
alternations constraints, and we want to design
a circuit with the proper size and depth?

•Essentially we make a gate for each state of the
ATM game. There are only polynomially of
them because it’s log space.

•We assign edges for the circuit based on the
moves that White and Black have available.

156

