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Review For Midterm

•Regular and Finite-State Languages (2) 

•CFL’s and PDA’s (1) 

•Turing Machines and Computability (3) 

•Miscellaneous Topics (1) 

•P, NP, and NP-Completeness (4) 

•Space Complexity (4) 

•Circuits and NC (2)
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Sets, Strings, Languages

•We start with sets, an alphabet, sets of 
strings over that alphabet, and finally 
languages. 

•The decision problem for a language L is 
to input a string w and return a boolean 
telling whether w is in L. 

•Our object of study is how difficult a 
decision problem might be for some 
language.
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Sections of the Course
•In Part I, we look at classes of languages 

that can be decided with particular 
constraints: the regular languages and the 
context-free languages. 

•In Part II, we look at whether languages 
can be decided or recognized by Turing 
machines. 

•In Part III (the rest of the course after this 
exam) we will measure languages by the 
resources needed to decide them.
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Regular Languages 

•We defined regular expressions, and 
defined the regular languages to be those 
that can be defined by regular 
expressions.   

•We then defined various kinds of finite-
state machines. 

•Our two central results were Kleene’s 
Theorem and the Myhill-Nerode 
Theorem.
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Kleene’s Theorem

•The class of languages recognizable by 
DFA’s is equal to the class of regulars. 

•From any regular expression, we can build 
an equivalent NFA from it, then in turn 
build an equivalent DFA by the Subset 
Construction.  

•From any DFA or NFA, we can build an 
equivalent regular expression by using 
State Elimination.
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The Myhill-Nerode Theorem

•Given any language L, we can define an 
equivalence relation such that u and v are 
equivalent if for all z, uz ∈ L iff vz ∈ L. 

•A language has finitely many classes in 
this relation iff the language is regular. 

•Given any correct DFA for a language, we 
can minimize it to get an equivalent DFA 
with the smallest possible number of 
states.
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Non-Regular Languages

•A consequence of the MN Theorem is that 
we can prove a language L to not be 
regular if there is an infinite set of strings 
that are pairwise distinguishable for L. 

•The Regular Language Pumping Lemma 
is another way to prove languages to not 
be regular.  It’s less useful for this purpose, 
but we will need to understand it in order 
to understand the later CFL Pumping 
Lemma.
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Closure Properties

•A natural question is whether, if we apply 
some operation to one or two regular 
languages, the result is regular. 

•The definition of the regular languages 
tells us that they are closed under union, 
concatenation and star. 

•From Kleene, we know that they are 
closed under complement and 
intersection, because the recognizable 
languages are. 
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Grammars and CFL’s

•A grammar is a way to define a language, 
so that a string w is in L(G) if we can 
derive w from the start symbol of G using 
its rules.  A context-free language is one 
that can be defined by a context-free 
grammar. 

•Grammars can be put in Chomsky 
Normal Form, which is useful if you are 
starting with an arbitrary grammar.
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Pushdown Automata

•A pushdown automaton is an NFA with a 
stack.  On one step, a PDA might read an 
input, push or pop on the stack. 

•The language of a PDA is the set of strings 
that it could read from the input and end 
in a final state. 

•Our central result is that PDA’s and CFG’s 
define the same class of languages.
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TD and BU Parsers

•Given a grammar G, we can define a top-
down parser, a PDA P with the same 
language. 

•P begins by putting S on the stack, 
applying rules to non-terminals on the 
stack, and reading terminals from the 
input to match terminals taken from the 
stack.  It finishes with an empty stack, 
having read all of the input.
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TD and BU Parsers

•The similar bottom-up parser works in a 
way that is reversed in both time and 
location. 

•It reads input letters and shifts them onto 
the stack, then applies reducing rules of G 
backward, until it creates S onto the stack. 

•It can only accept by removing this S from 
the stack after shifting all the letters.
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Building a CFG from a PDA

•Although it’s not of practical importance, 
we learned the proof that from any PDA, 
we can construct an equivalent CFG. 

•We first place the PDA into a normal 
form, where it only accepts with an 
empty stack and either pushes or pops 
one letter at each step, never both. 

•Our grammar has one non-terminal Apq for 
every pair of states in the PDA.
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Building a CFG from a PDA
•The non-terminal Apq generates any 

strings that can be read by the PDA when 
it starts in state p with an empty stack and 
finishes in state q with an empty stack. 

•Any computation of the PDA with more 
than one step can be broken down into 
smaller computations. 

•We either return to the empty stack in the 
middle, or we push a letter that we pop at 
the end.
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Proving Non-CFLness

•We can prove various languages to be 
non-CFL’s by using the CFL Pumping 
Lemma. 

•Any CFL L has a constant p such that any 
string w ∈ L, with |w| ≥ p, can be 
divided into strings u, v, x, y, z such that   
|vy| > 0, |vxy| ≤ p, and for all naturals 
i, uvixyiz is in L.
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Proving Non-CFLness

•We proved this lemma by using surgery 
on parse trees.  Any correct parse tree for 
w can be altered to make a correct parse 
tree for these new strings. 

•To prove that L is not a CFL, we choose a 
long string w in L, and show that any 
possible division of w into uvxyz must 
either fail to pump up or pump down.

17



The Chomsky Hierarchy

•A linear bounded automaton acts like a 
Turing machine, but does not have access 
to tape beyond the amount needed for its 
input. 

•We also looked at unrestricted 
grammars, which can generate exactly 
the set of languages that are recognized 
by Turing machines.
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Turing Machines
•We saw things that a Turing machine can 

do, starting with copying strings, 
comparing strings, counting, and so forth. 

•We saw that our familiar programming 
techniques could (in principle) be adapted 
to this setting. 

•We can describe Turing machines 
formally, at implementation level, or at 
high level.  The latter amounts to a proof 
that a formal description exists.
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Variants of TM’s

•We proved the Multitape Theorem, that 
any Turing machine with multiple tapes can 
be simulated by a single-tape machine. 

•With this we were able to simulate a non-
deterministic machine with an ordinary 
one, though at enormous cost in time. 

•The language of an NTM is the set of all 
strings that are found by an exhaustive 
search.
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Variants of TM’s

•We also defined enumerators — machines 
that take no input, but put a succession of 
strings onto an output tape, such that the 
strings that appear are enumerated. 

•A language L is the language of some Turing 
machine iff it can be enumerated. 

•A language can be decided by a Turing 
machine iff it can be enumerated in order.
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TD and TR Languages

•A Turing-recognizable or TR language L 
is one where there exists a Turing machine 
that accepts any string w iff w ∈ L.  If w ∉ 
L, the machine may either reject or fail to 
halt. 

•A Turing-decidable or TD language L is 
one where there exists a Turing machine 
that accepts all strings w such that w ∈ L 
and rejects all strings such that w ∉ L.
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TD and TR Languages

•We proved the TD/TR Theorem, which 
says that a language is TD iff it and its 
complement are both TR. 

•A Turing-decidable or TD language L is 
one where there exists a Turing machine 
that accepts all strings w such that w ∈ L 
and rejects all strings such that w ∉ L.
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TD and TR Languages

•One direction is easy — any TD language 
is TR, and the complement of a TD 
language is also TR. 

•For the other direction, we need to use 
dovetailing to run two processes in 
parallel.  If we have a recognizer for 
language L and a different one for L-bar, 
we can run both in parallel and one will 
be sure to eventually halt.
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Decidable Languages

•We’ve defined a number of languages 
about other computing systems.  For 
example, the language ADFA is the set of 
pairs (D, w) such that D is a DFA, w is a 
string over D’s input alphabet, and w ∈ 
L(D).  Similarly we have ACFL and ATM. 

•ETM is the set of Turing machines with 
empty languages, and ALLTM is the set of 
Turing machines whose language is Σ*.
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Decidable Languages

•Most languages concerning regular 
languages or DFA’s are decidable. 

•Sipser proves that ACFL is decidable, and 
we prevented the more practical 
CKYLalgorithm to decide that. 

•We proved that ECFL is decidable, but it 
turns out that ALLCFL is not.
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Undecidability

•Using the diagonal argument, we are 
able to show that certain languages are 
not TD. 

•For example, if there were a Turing 
machine M that decided ATM, we could 
build a Turing machine that would accept 
any string that is the encoding of a 
machine that does not accept itself.  This 
is a contradiction.
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Undecidability
•So ATM cannot be TD.  Since we know that 

it is TR, it must fail to be co-TR. 

•Other languages like ETM and ALLTM are 
easily adapted to show them to be 
undecidable. 

•For example, given any machine M and 
string w, let R be the machine that erases 
its input and runs M on w.  If we could tell 
whether R were in ETM or ALLTM, we could 
decide whether M accepts w.
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Accepting Computation Histories

•The method of accepting computation 
histories lets us show some problems 
about other computation models to be 
undecidable. 

•A configuration is a string that represents 
the state of a Turing machine at one step.  
A computation history is a sequence of 
configurations where each succeeding one 
follows from the previous by the rules.
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Accepting Computation Histories
•Once we start the machine, the remainder 

of the computation history is determined, 
since the machine is deterministic. 

•If the machine accepts its input, there will 
be an accepting computation history, 
proving that the machine accepts that 
string. 

•But testing the validity of an alleged ACH 
is generally easier than finding whether 
one exists.
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Accepting Computation Histories
•Recall the LBA, which is like a Turing 

machine but is limited to its original tape 
space.  If we get an alleged ACH, we can 
run an LBA on it to see whether it is valid. 

•The question of whether M accepts w is 
equivalent to whether some particular 
LBA has any string that accept.   

•So if we could decide ELBA, we could solve 
this undecidable problem, so ELBA  is 
undecidable itself.
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Accepting Computation Histories
•Similarly, with some work, we can show 

that the set of strings that are not ACH’s 
form a CFL, as long as we reformat the 
computation histories to alternate 
between forwards and backwards. 

•To fail to be an ACH, it must either (1) fail 
to start with q0w, (2) make an incorrect 
step from one configuration to the next, or 
(3) fail to finish with the accepting 
configuration.  (1) and (3) are regular, 
and (2) is a CFL.
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Post’s Correspondence Problem

•PCP is a simple undecidable problem using 
ACH’s.   

•A PCP instance  is a set of dominoes, each 
with a non-empty string on top and bottom. 

•A match is a sequence of dominoes such that 
the concatenation of the top strings and the 
concatenation of the bottom strings are 
equal.  The PCP problem is to determine 
whether a match exists in the instance.
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Post’s Correspondence Problem

•With some care, we can set up a given 
instance such that any match in it must be 
derived from an ACH of some machine M 
and some string w. 

•At any given time, there is one configuration 
hanging over the two strings.  The only way 
to continue toward a match is to copy the 
string and make a new hanging string that 
has to be the next configuration of M.
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Mapping Reductions

•A useful way to organize undecidable 
results is with mapping reductions.  If A 
and B are any two languages, A ≤m B is 
true if there exists a computable function f 
such that for any string w, w ∈ A iff f(w) 
∈ B. 

•A computable function is one where there 
is a Turing machine that takes any input w 
and always halts with f(w) on its tape.
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Mapping Reductions
•The relation A ≤m B is transitive and is 

closed downward for classes like TD, TR, 
and co-TR.   

•Thus if we know that A is not TD, for 
example, and A ≤m B is true, then B 
cannot be TD.  Similarly, if A is not TR, 
then B cannot be TR. 

•But remember that the function f must 
take true instances of A to true ones of B, 
and vice versa.
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Mapping Reductions

•Earlier we saw a function f that took an 
instance (M, w) of ATM and mapped it to a 
machine R that erases its input and runs 
M on w.  This function is computable. 

•This gives us reductions ATM ≤m ETM-bar 
and ATM ≤m ALLTM. 

•As with NP-completeness, we can define a 
language A to be TR-complete if it is TR 
and if B is any TR language, B ≤m A.
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The Arithmetic Hierarchy
•The Arithmetic Hierarchy is a class of 

languages where each one can be described 
using first-order logic. 

•We are allowed to use TD predicates, 
boolean operators, and ∃ and ∀ quantifiers 
over strings. 

•If the formula is in prenex form, we can 
classify it as being “Σi” or “∏i”, where the “i” 
means how many levels of quantification we 
have and Σ means starting with ∃ and ∏ 
means starting with ∀.
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The Arithmetic Hierarchy
•Here’s an example.   Let the language MIN 

consist of every Turing machine M such that 
there is no shorter machine that has the same 
language as M. 

•We can write “M ∈ MIN” as ∀C: (|C| < |M|) → 
∃w: (w ∈ M) ⊕ (w ∈ C). 

•But “w ∈ M” is not a TD predicate.  We have to 
something like “∃h: ACH(M, w, h)” using 
acceptation histories. 

•Using this to decode, we can put MIN in the AH.
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The Recursion Theorem

•Sipser shows a way to build (at a high level) 
a Turing machine that prints its own 
description.  This is also called a quine, and 
in the slides we included a Java version. 

•The Recursion Theorem says that if t is any 
two-argument function on strings defined by 
a Turing machine (which may or not be 
computable — it may be a partial function) 
there exists a machine R such that for any 
string w, R(w) = t(R, w).
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The Recursion Theorem

•The proof for quitting uses an indirect way 
to specify a string, so that the resulting string 
turns out to be the exact description of the 
string itself.  The proof for the Recursion 
Theorem is also similar. 

•To use the Theorem in practice, you can 
include instructions to “obtain your own 
description” in your code. 

•This is a good way to create viruses.
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Kolmogorov Complexity

•We can classify strings by how many bits 
we need to specify the string.   

•One way to do it is to simply quote the 
string, so that if it was n bits long, we will 
need n + c bits to do it that way. 

•But if there is a regularity in the string, 
you might be able to specify it with fewer 
bits.
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Kolmogorov Complexity
•If we can define a machine M and a string 

u such that M, running on u, halts with w 
on its string, then we have a description 
for w which is (M, u). 

•The Kolmogorov complexity of w is the 
length of its shortest description. 

•Note that we have to account for the 
format of “(M, u)” when we compute its 
size.  For example, we might use double-
letter notation for M and then write u. 
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Kolmogorov Complexity
•By a counting argument, we proved that 

there exist strings of any length with K(w) 
≥ |w|.  We also showed that most strings 
have K(w) ≥ |w| - c. 

•Finally, we observed that this K function is 
not computable, since to know a 
description of w was the shortest possible, 
we would have to rule out any shorter 
string’s computation that later halted with 
w.
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Polynomial Time
•We now turn to time complexity, where 

we count the number of Turing machine 
steps needed to decide membership in a 
language. 

•We use asymptotic notation such as 
O(f(n)) for time bounds, as in COMPSCI 
311.  The class DSPACE(f) is the set of 
languages X such that there is a machine 
M such that for any string w of length n, 
M decides whether w ∈ X using O(f(n)) 
steps in the worst case. 
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Polynomial Time

•The set P is the class of languages that is 
the union of the classes DSPACE(nk) for 
all naturals k. 

•That is, the worst-case time for the 
machine to decide whether w ∈ X, where 
|w| = n, is polynomial in n. 

•This class is robust in that many other 
models have the same “polynomial time” 
class as for Turing machines.
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Examples of Polynomial Time

•We saw that reachability and connectivity for 
graphs can be decided in P. 

•We can carry out the Euclidean Algorithm, so 
that we can test relative primality for n-bit 
number in time polynomial in n. 

•We can decide the language ACFL in P using 
the CYK algorithm, which uses dynamic 
programming.  We used a similar algorithm 
on HW#4 to decide whether an element is a 
possible product in a groupoid.
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NP and Verifiers
•We turned to examples that we don’t know 

how to solve in P, but which we could solve in 
exponential time with a brute force search. 

•These included HAM-PATH, CLIQUE, and 
SUBSET-SUM. 

•In each case, we could verify that a particular 
string was in the language, given a witness 
string, such as a Hamilton path for the an 
instance of the HAM-PATH problem. 

•Deciding whether a witness is valid for an 
instance is a problem in P.
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NP and Verifiers

•Going back to nondeterministic Turing 
machines, we can define the class NSPACE(f) 
to be the languages of NDTM’s that take at 
most O(f(n)) steps on inputs of length n, no 
matter how they make their choices. 

•Similarly NP is the union of NSPACE(nk) for 
all naturals n. 

•It’s not hard to prove that a language is in NP 
if and only if it has a poly-time verifiers.  So 
there are two alternative definitions of NP.
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P Versus NP

•Clearly P is contained in NP, and we don’t 
believe that P = NP, but for over 50 years the 
mathematical community has failed to prove 
either that they are equal or that they are not. 

•As a practical matter, we can prove a large 
class of languages to be outside of P unless P = 
NP.  These are the NP-complete languages.  

•There are languages outside P that are not NP-
complete, unless P = NP, but examples of them 
don’t come up so often.

50



P-Reductions, Completeness

•Just as we used mapping reductions in 
computability theory to prove completeness, we 
define poly-time reductions to prove 
completeness in complexity theory. 

•If X and Y are languages, X ≤p Y is defined to 
be true if there exists a poly-time function f 
such that for all strings w, (w ∈ X) ↔ f(w) ∈ Y. 

•The classes P and NP are closed downward 
under ≤p.  This means that non-membership in 
P is closed upward under ≤p.

51



P-Reductions, Completeness
•Just as ATM is naturally TR-complete under ≤m, 

we can define a language ANP that is naturally 
complete under ≤p.   

•We define ANP to be the set of pairs (M, w, 1t) 
such that M is an NDTM, w is an input to M, 
and that M can accept w in at most t steps. 

•Once we know that NP-complete languages 
exist, we can find more interesting examples. 

•The methodology to prove Y to be NP-complete 
is to show Y ∈ NP, find a language X that is 
known to be NP-complete, and show X ≤p Y.
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CNF, SAT, and 3-SAT
•The methodology to prove Y to be NP-complete 

is to show Y ∈ NP, find a language X that is 
known to be NP-complete, and show X ≤p Y. 

•To start this process, ANP  is less useful than 
some other languages we’ll now define. 

•Recall conjunctive normal form in boolean 
logic.  A formula is in CNF if it is the AND of 
clauses, each of which is an OR of literals. 

•If the clauses each have exactly three literals, 
the formula is said to be in 3-CNF.
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CNF, SAT, and 3-SAT

•A formula is satisfiable if there exists at least 
one setting of the variables making it true. 

•The SAT formula is to input a formula and 
output whether it is satisfiable. 

•If the formula is in CNF, we have the CNF-SAT 
language, and if it is in 3-CNF, we have 3-SAT. 

•We will  show that all three of these languages 
are NP-complete, and these are the most 
common sources for reductions to others.
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The Cook-Levin Theorem
•We prove CNF-SAT to be NP-complete by taking 

an arbitrary single-tape poly-time NDTM M and 
construct a CNF formula (for a given input w) 
that is satisfiable if and only if there is a way for 
M to accept the string w.  This reduces ANP  to 
CNF-SAT. 

•The main idea is to construct a tableau, which 
is a two-dimensional array of letters from the 
tape alphabet (or states of M) as in Turing 
machine configurations.  Each row of the 
tableau is a configuration at one time step.

55



The Cook-Levin Theorem
•A tableau represents a computation of M on w, 

following the rules of M.  If there is a valid 
tableau that ends with the accept state, then w 
is in L(M). 

•We will represent each cell of the tableau by a 
set of boolean variables.  Choosing values of 
these variables defines the letters of the cells. 

•We will write a CNF formula that expresses that 
the tableau represents a valid accepting 
computation of M on w.  If this formula is 
satisfiable, then w ∈ L(M).
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Conditions on a Tableau
•So we need to specify conditions on 

making the tableau valid and accepting. 

•We first need each of the variables for xi,j,c 
to represent exactly one cell for xi,j. 

•Then we need the time step for xi to 
represent the proper start configuration. 

•Then step i+i needs to be a possible 
successor configuration from step i. 

•Finally, step p(n) must be accepting.
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Conditions on a Tableau

•Each of these conditions can be expressed 
as a CNF formula.  The most complicated 
one says that each cell of the tableau can 
possibly come from the three cells below 
it, according to the rules of M. 

•Every 2 by 3 window of the tableau must 
be one that can occur in a valid 
computation, and if all the windows are 
legal, then the entire computation must be 
valid.
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Legal Windows
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a q1 b
q2 a c

# b a
# b a

a a q1

a a b
a q1 b
a a q2

a b a
a b q2

b b b
c b b

(a) (b)

(f)(e)(d)

(c)

(a)head moves left, overwrites b with a c 
(b)head moves right, overwrites b with an a 
(c)head moves off right, overwrites hidden letter with a b 
(d)no change at all 
(e)head moves left from hidden position  
(f) head was to the left, moved left, overwrote b with c



The Cook-Levin Theorem
•This argument proves that CNF-SAT is NP-

complete.   

•To show that 3-SAT is NP-complete, we need to 
show CNF-SAT ≤p 3-SAT. 

•It’s not possible to turn a CNF formula into an 
equivalent 3-CNF formula, but we can find a 3-
CNF formula such that one is satisfiable if and 
only if the other is satisfiable. 

•Each node of the CNF formula involves three 
variables, and we can use 3-CNF clauses to say 
that every node of the formula is correct.
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Applying Cook-Levin

•Once we know that 3-SAT is NP-complete, we 
can show more languages to be NP-complete. 

•In each case we first show that our new 
language X is in NP.  Then we show 3-SAT ≤p X. 

•On the next four slides we show some examples 
of four such reductions.
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3-SAT ≤p CLIQUE
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¬x1

x2

x2

¬x1

x2

x1

x1

¬x2¬x2

φ = (x1∨x1∨x2) ∧ (¬x1∨¬x2∨¬x2) ∧ (¬x1∨x2∨x2)

We have edges if they are in different clauses, and the 
nodes do not have opposite labels like x1  and ¬x1.



VERTEX-COVER is NP-C
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x2 ¬x2

x2

x1

x1 ¬x2 x2

¬x1

¬x2

¬x1

¬x1x1

x2

We also have to cover the transverse edges.  But if we pick a 
good assignment for the variable nodes, we only need two 
nodes from each clause node.  This covers with only m+2h.

To cover all the variable and edges, we need one at least one 
variable node and at least two of each clause node. 



Zigzags and Zagzigs
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s

t

x1

x2 ¬x2

¬x1

To touch all the nodes from s to t, we need to choose for 
each variable a zigzag from xi to ¬xi, or a zagzig from 
¬xi to xi.  Choosing each zigzag or zagzig will correspond 
to making an assignment of the n boolean variables.



SUBSET-SUM is NP-complete
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                   c1      ck
y1 | 1 0 0 0 … 0 | 1 0 … 0
z1 | 1 0 0 0 … 0 | 0 0 … 0
y2 |   1 0 0 … 0 | 0 1 … 0
z2 |   1 0 0 … 0 | 1 0 … 0
y3 |     1 0 … 0 | 1 1 … 0
z3 |     1 0 … 0 | 0 0 … 1
…
ym |           1 | 0 0 … 0
zm |           1 | 0 0 … 0
—————————————————————————-
g1 |             | 1 0 … 0
h1 |             | 1 0 … 0
…
——————————————————————————
t  | 1 1 1 1 … 1 | 3 3 … 3

The 1’s under the c’s 
are for the literals. 

If clause cj has a 
positive literal xi, we 
put a 1 in row yi. If cj 
has negative literal 
for xi, we put 1 in zi. 

The g’s and h’s can 
fill from 1 to 3.



Defining the Hierarchy
•We earlier defined the Arithmetic 

Hierarchy, with alternating quantifiers 
with the base level as TD classes. 

•So TR languages can be defined as Σ1 

languages, so that A(w) = ∃x:R(w, x) 
where R is a TD predicate. 

•With a slight change in the we can define 
the Polynomial Hierarchy, where the 
base level is the class P, and the quantifiers 
are bounded by polynomial length.
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Defining the Hierarchy
•So a class in Σ1 for the polynomial 

hierarchy is defined A(w) ↔ ∃x:R(w, x) 
where R is a poly-time predicate and x is 
bounded in polynomial length in w.   

•Thus the time to compute R(w, x) is 
bounded in poly time in the length of w. 

•Similarly we can define a 𝚷1 class in the 
polynomial hierarchy by B(w) ↔ ∀x:R(w, 
x), with the same conditions.  R is poly-
time, and the length of x is poly(w).
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Examples of the Hierarchy

•NP is the class Σ1 of the hierarchy. 

•co-NP is the class ∏1. 

•The set of tautologies in boolean logic is 
complete for ∏1. 

•The set of minimal formulas in boolean 
logic, the ones that do not have shorter 
formulas equivalent to them, is complete 
for ∏2.
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ATM’s and the Hierarchy
•An alternating Turing machine is a 

generalization of an NDTM.  Along with 
nondeterministic choices by some entity that 
wants the machine to accept, there are also 
universal choices that are made by some 
other entity that wants the machine to reject. 

•The game semantics is my preferred way to 
explain the meaning of alternating TM’s.  
Every state of the machine is a choice for 
White, who wants it to accept, or for Black, 
who wants it to reject.  One or the other must 
have a winning strategy. 
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ATM’s and the Hierarchy

•In an ordinary NDTM, the input is in the 
language if and only if White, who makes all 
the choices, can make the machine accept. 

•If a language is in the complement of the 
language of an NDTM, we can build an ATM 
where White is trying to make the original 
machine reject, but Black makes all the 
choices, and White can only win if there is no 
accepting path.
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Defining PSPACE
•Let X be a language, and we have an 

algorithm that can decide, whether any 
string w of length n is in X, using at most 
O(f(n)) total tape cells. 

•Then X is in the space complexity class 
DSPACE(f).  

•The class PSPACE is the set of languages 
that are in DSPACE(nk) for any constant k.  

•This is the simplest space complexity 
class, but it is a very powerful class.
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Polynomial Space
•It’s easy to observe that P is contained in 

PSPACE. 

•But we can also decide a language in NP 
using polynomial space.  We simply carry out 
the brute force simulation — the time is 
terrible, but we have enough space to keep 
track of which computation path we are 
testing. 

•Similarly we can show by induction that 
every class Σk in the polynomial hierarchy is 
contained within PSPACE.
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Polynomial Space
•PSPACE is contained within exponential time.  

If it runs more that the number of 
configurations it has, we can shut it off. 

•Sipser applies this idea to show that the 
language ALLNFA  is in NPSPACE.  By 
reasoning about the corresponding DFA of 
our NFA, we know that if it doesn’t accept 
everything, there must be a string of 
exponential length that is not in L(N). 

•With polynomial space, we can guess this 
string if it exists, using the memory to verify 
that each configuration follows from the next.
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Logarithmic Space

•We now turn to smaller space classes, starting 
with L, the languages that can be decided in 
O(log n) tape cells on input of size n. 

•This only makes sense if we get our input on 
a read-only input tape, and only count our 
read-write memory toward our space bound. 

•A two-way DFA defines the class DSPACE(1), 
where there is only constant memory other 
than the read-only input tape.
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Logarithmic Space
•We use “L” and “NL” to mean DSPACE(log n) 

and NSPACE(log n) respectively. 

•We can define {anbn: n ≥ 0}, or even {anbncn: 
n ≥ 0}, in L by counting the letters in binary. 

•In NL, we can solve reachability in a directed 
graph.  In O(log n) space, we can remember 
one node number, verify that another node 
has an edge to it, and jump to the new node, 
forgetting the old one.  If we can get to the 
target node, then there was a path, and 
conversely.
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Logarithmic Space

•Of course we know that reachability is in P, 
using DFS or BFS, but these use linear space 
and so the NL algorithm is quite different. 

•Any language in L or NL is also in P. 

•Given a space-bounded machine, we can 
make its configuration graph, with a node 
for each configuration and an edge to any 
node for a configuration we could to go in 
one step.  In a log-space machine, there are 
only a polynomial number of configurations.
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Logarithmic Space

•In a machine for L, we can start at the node 
for the start configuration, follow the unique 
edge from every node, and see whether we 
reach an accepting configuration. 

•In a machine for NL, we want to know 
whether there is any path from the start 
configuration to the accepting one.  In P, we 
can answer that using DFS or BFS.  So NL ⊆ 
P.
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Savitch’s Theorem

•We think that NP is a much larger class than 
P, as we don’t know how to decide an NP 
language deterministically with less than 
exponential time. 

•But NL seems to be closer to L.  Savitch’s 
Theorem says that NL is contained in 
DSPACE(log2n).  This is an important use of 
dynamic programming. 

•How well can we solve reachability if our 
goal is to minimize deterministic space? 
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Savitch’s Theorem

•How well can we solve reachability if our goal is 
to minimize deterministic space? 

•Let PATH(c, d, t) be a predicate saying that there 
is a path of at most t steps from c to d. 

•We can easily find PATH(c, d, 1) as a base case. 

•We can find PATH(c, d, 2) by testing any node e 
to see whether both PATH(c, e, 1) and PATH(e, d, 
1) are both true.  
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Savitch’s Theorem

•Similarly, we can attack the problem of PATH(c, d, 
t) by recursively testing, for each node e, whether 
PATH(c, e, t/2) and PATH(e, d, t/2) are both true. 

•Our recursion will need a recursion depth O(log 
t).  In an NL machine, the size of the graph for 
which we want reachability is polynomial, so the 
recursion depth is O(log n). 

•In the recursion, our stack frame will need O(log 
n) bits for each recursive call, since we must 
remember the node e, which is O(log n) bits.
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Savitch’s Theorem

•The time for this algorithm is terrible, O(nlog n) in 
general, but it does test membership for NL in 
DSPACE(log2). 

•This generalizes, as long as f ≥ log n, to say that 
NSPACE(f) ⊆ DSPACE(f2). 

•A special case of this is that NSPACE(nk) ⊆ 
DSPACE(n2k), from which it follows that NPSPACE 
= PSPACE.
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Completeness for NL

•For it to make sense for a problem to be complete 
for NL, we can’t use p-reductions because every 
nontrivial language in P is ≤p reducible to any 
other. 

•Within P, we’ll define ≤L reductions, defined just 
as with ≤p except that the function making w ∈ X 
↔ f(w) ∈ Y is a log-space transducer. 

•This is a machine with w on a read-only input 
tape, O(log n) bits of read-write memory, and a 
write-only output tape where it puts f(w).
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Completeness for NL
•L-transducers are transitive!  It’s not immediate 

that if X ≤L Y and Y ≤L Z, then X ≤L Z, because 
you a priori need too much read-write space to 
hold the string in Y.   

•The trick is, whenever you need a bit of the string 
in Y, is to recompute it from w, going back to the 
start of the computation that defines it.  We use 
O(log n) space for each of the two computations, 
and this is still O(log n) space. 

•In practice, if there are only O(1) compositions, 
you can think of the intermediate steps being in 
read-write memory.
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Completeness for NL

•Once we have the definitions, it’s pretty obvious 
that the language REACH is NL-complete.  We 
know that it’s in NL.  If we have an arbitrary NL 
language, there is a log-space NDTM for it, and it 
has a configuration graph with polynomially many 
nodes.  All we need to know is whether there is a 
path from the start to final configuration. 

•Why is this log space?  We just have to construct 
the configuration graph, which is just cycling 
through all the possible configurations.
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Completeness for P

•Having ≤L reductions lets us talk about 
completeness for the class P. 

•We could define a language AP of the tuples (M, w, 
1p) such that M accepts w in at most p steps.  It’s 
pretty clear that any language in P can be reduced 
to AP using ≤L reductions. 

•But a more interesting P-complete language brings 
us to circuit complexity.
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Circuit Complexity
•A boolean circuit is similar to a boolean formula, 

but gates are allowed to fan out to multiple gates. 

•The size of the circuit is the number of nodes, and 
its depth is the length of the longest path from the 
output node to any input node.  An input node 
gets the value of one bit of the input string. 

•Every node, except for an input node, is computed 
from a binary AND gate, a binary OR gate, or a 
unary NOT gate.  The directed circuit of the graph 
must be acyclic — we cannot have later gates feed 
into earlier ones.
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Some Circuit Examples

87

x y

∧

¬ ¬

∧

∨
x ⊕ y



Some Circuit Examples

•We can construct a poly-size circuit for any 
regular language.  We can just simulate a DFA, 
using a constant number of gates for each time 
step, using height O(n) and size O(n).  (And 
this is contained in L and NC1.) 

•We can construct a poly-size circuit for any 
CFL, using the CYK algorithm.  In a result we 
will probably not get to COMPSCI 501, we can 
show that the class of CFL’s is bounded within a 
class that is (probably) not a strict subset of P. 
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The Circuit Value Problem
•Let C be a circuit with inputs x1,…,xn and with 

p(n) total nodes. 

•The Circuit Value Problem is to take a 
boolean assignment of the input values and 
find the value of the input node. 

•It should be pretty clear that CVP is contained 
in the class P.  If we have a Turing machine, 
with polynomial space available, all we need to  
do is evaluate each node in the right order 
until we have the value of the input node.
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Cook-Levin Again

•In order to prove that CVP is complete for P, 
we need to take an arbitrary language X in the 
class P, and prove X ≤L CVP. 

•So given an input w and a Turing machine M 
and a polynomial time bound p(n), we need to 
create a circuit of polynomial nodes, with 
w1,…,wn as the inputs, such that w ∈ X iff the 
output of the the circuit on the input gives 1. 

•And we have to construct the circuit from w 
using a log-space transducer.
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Cook-Levin Again

•Fortunately we have already done this work. 

•We can even simplify the Cook-Levin tableau 
construction, because our poly-time single-tape 
computation is deterministic. 

•Lay out a square tableau of configurations for 
each row of p(n) cells and states. 

•Then we have one configuration for each of the 
p(n) time steps.  To compute a cell for position 
x and time step t, we can do this with a circuit.
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Cook-Levin Again

•Then we have one configuration for each of the 
p(n) time steps.  To compute a cell for position 
x and time step t, we can do this with a circuit. 

•If we have cells (x-1,t-1), (x, t-1), and (x+1, 
t-1), each encoded as enough boolean nodes, 
we can take this input and feed into into a 
circuit to get the result of cell (x, t). 

•Note that we will need multiple fan-out, since 
for example (x-1,t-1) must also feed (x-1,t-1).
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Complete Languages for PSPACE
•It’s pretty easy to prove that some language 

exists that is complete for PSPACE.  We 
need X to be in PSPACE, and that Y ≤p X for 
every Y in SPACE. 

•Let APS be the language (M, w, 1t) such that 
M accepts w using at most t tape cells. 

•If Y is in PSPACE, let Y = L(MY), where MY 
is bounded by p(n) space. 

•Then we map w to (MY, w, 1p(n)).  So w ∈ Y 
iff (MY, w, 1p(n)) ∈ APS.
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Quantified Boolean Formulas
•Our more interesting natural PSPACE 

complete language is defined with 
quantified boolean formulas. 

•We start with n boolean variables, 
combine them with boolean operators, 
and quantify boolean variables using ∃ 
and ∀ quantifiers. 

•One example of this is satisfiability, when 
we write a boolean formula and then bind 
each variable with ∃ quantifiers.
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Solving TQBF in PSPACE
•So if the formula begins as ∃x1:φ(x2,…,xn), 

we can decide whether the sentence is true. 

•We try setting x1 to 1, accept if the result 
becomes 1, then otherwise check x1 = 0. 

•Checking these two results are each 
recursive.  The space we need for the 
computation is one bit for x1, then whatever 
space we need for the rest of either of the 
two computions.   

•We only need linear space to finish it.
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Reducing PSPACE to TQBF

•So now we are left with the harder half of 
the proof, where we have a language A in 
PSPACE and we need to prove A ≤p TQBF. 

•Here’s an approach that doesn’t work. 

•Design a a tableau as for Cook-Levin, with 
width O(nk), assigning boolean variables 
and expressing that we have an accepting 
tableau.  The problem is that the height of 
the tableau is exponential in n.
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Reducing PSPACE to TQBF
•We can represent the configuration at any 

time step by O(nk) = bits. 

•Let any two configurations and let t be any 
number up to the exponential time bound. 

•We can compute, as for Cook-Levin, whether 
the machine can take it from configuration c 
to configuration cʹ in one step. 

•How can we determine whether M can take 
c to d in at most 2p(n) steps?
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Expressing Paths by Savitch
•Suppose we express the statement φc, d, t 

that says we can go from c to d in at most t 
steps.   

•We can write φc,d,t = ∃e:[φc,e,t/2 ∧ φe,d,t/2]. 

•Of course e is not a boolean, so we are 
writing ∃e1…em:[φc,e,t/2 ∧ φe,d,t/2]. 

•That’s ok, but there’s a problem with when 
we double the boolean formula poly-many 
times.  We don’t have a poly-length TQBF 
formula, so we can’t map ≤p to it.

98



Saving Formula Space

•So far, though, we haven’t used both types 
of quantifiers. 

•To say that both φc,e,t/2 and φe,d,t/2 are true, 
we can write ∀c1,c2:{(c,e), (e,d)}φc1,c2,t/2. 

•This can be written in boolean operations as 
[((c1↔c)∧(c2↔e))∨((c1↔e)∧(c2↔d))] → 
φc1,c2,t/2. 

•However we pick c1 and c2, these conditions 
make those two φ statements both true.

99



Saving Formula Space
•Our TQBF formula reduces the 2p(n)-step 

formula to a 2p(n)/2-step formula by adding 
∃e1…em:∀c1c2:(booleans), which is 
polynomial length. 

•This makes the entire TQBF formula still in 
polynomial length, since we have p(n) 
rounds.   

•More precisely, the formula length is 
O(p2(n)), since we have O(p(n)) ∃ 
quantifiers, and O(p(n)) rounds in all.
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The Formula Game for TQBF

•We’ve proved that the language TQBF, of 
the set of quantified sentences formulas 
that evaluate to true, is complete for 
PSPACE. 

•Here is a natural interpretation of TQBF as 
a formula game. 

•Given the quantified formula in prenex 
form, the game proceeds by the players 
choosing variables. 
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Generalized Geography
•Here is another game that turns out to be 

PSPACE-complete as well. 

•Sipser first describes it as generalized 
geography, where the game board is a set of 
cities. 

•The first player chooses a city.  Each succeeding 
city must begin with the same letter as the last 
letter of the previous city. 

•So if you start with AMHERST, I could move 
TURNERSFALLS, and I could follow with SALEM.
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Formula Game ≤p GG

•We now have the tools to show that the GG 
game is also PSPACE-complete. 

•We’ve shown that GG is in PSPACE, and we will 
show that the Formula Game reduces to GG. 

•Given an arbitrary QBF formula, we’ll assume 
that the part after the quantified parts are in 
CNF form.  (The argument for TQBF 
completeness works under this assumption, as 
we can check.)
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Formula Game ≤p GG
•We set up our GG graph with 

a start node, where White 
will make the first move, 
and the second move is third 
moves are forced. 

•Then Black will make a free 
choice in the next move and 
the next two are forced.   

•They will alternate, each 
choosing one node.
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Formula Game ≤p GG

105

B

W

W
∃x1

∀x2

∃x3

x1 ¬x1

¬x3x3

¬x2x2

If the boolean part is true, then 
every clause is satisfied.  We let 
Black pick which clause, and White 
tries to pick a true literal. 

B move, 
start

c1

c2

c3

¬x2

x1

x3

W move, 
for clause



Poly-Time Games in PSPACE
•In general, when we play a game with a 

polynomial time bound, the winning 
strategy can be determined in PSPACE. 

•You recursively find who has the strategy, 
with the base case being the final position of 
the game, and each step recursing from time 
t to time t+1. 

•Because the time bound is polynomial, you 
only need room in the method stack for 
polynomial space.  (Each stack frame uses 
only polynomial space.)
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Log-Space Games in P
•But if we play for polynomial time on a 

game board that remains fixed, where we 
keep track of a only constant number of 
positions on the board, we can find winning 
strategies in P (poly-time). 

•A position in the game is recorded by O(log 
n) bits, if the fixed board is stored in read-
only memory.  So there are only 
polynomially many configurations in the 
game.
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A P-Complete Game

•The circuit game starts with the position in 
the output node of the circuit. 

•When the current node is an OR gate, White 
moves to an input of the current node.  If 
the current node is an AND gate, Black 
move to an input of the current node. 

•When we reach an input literal, White wins 
the game if it is 1 and Black wins if it is 0.
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A P-Complete Game
•Now remember that the players have infinite 

computational power available.  So each one 
of them knows exactly which node will 
evaluate to, given the input values and the 
fixed circuit. 

•So if the input node will evaluate to 1, 
White should have a winning strategy, and 
she does.  If it is her move, there must be an 
input that evaluates to 1.  If it is Black’s 
move, then every move must evaluate to 1.
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Non-Reachability in NL
•Using our knowledge about completeness, 

we’ll prove the result by showing that non-
reachability in directed graphs is in NL. 

•We need a nondeterministic procedure, 
with input (G, s, t), that can accept its input 
if and only if there isn’t a directed path 
from s to t. 

•The key method is to count, for any natural 
d, the number of nodes that can be reached 
from s with at most d edges.
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Inductive Counting for NL
•Let Nd be the number of nodes that have paths of 

length of d or fewer edges, starting from s. 

•We know that N0 = 1, since only s can be reached 
from itself with no edges.  What about N1? 

•We can find it deterministically in L by counting 
the edges out of s.  But getting N2 gets harder.  If 
we cycle through all the two-step paths from s, 
we have to make sure we deal with multiple 
paths to the same place.  

•Here’s where we can use nondeterminism.
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Inductive Counting for NL
•If there is a path of length at most d from s to x, 

our nondeterministic machine can verify this by 
taking a path from s to x, remembering how 
many edges it has taken.  As in our NL algorithm 
for reachability, it only needs to remember the 
current node, and the number of edges, in its log 
space memory. 

•Suppose I know the value of Nd.  I can cycle 
through all the nodes, and for each one I guess 
whether it has a path of length at most d from s.  
If it is, I verify this fact.
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Inductive Counting for NL
•Suppose I know the value of Nd.  I can cycle 

through all the nodes, and for each one I guess 
whether it has a path of length at most d from s.  
If it is, I verify this fact. 

•If, when I’ve gone through all the nodes, unless 
I’ve guessed and verified Nd of those nodes, my 
procedure fails.  There exists a sequence of 
correct guesses, for the correct value of Nd, and 
we can consider only runs of the procedure when 
we find it.
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Inductive Counting for NL
•Suppose I want to know whether a particular 

node z has a path of length at most d+1 from s. 

•If I go through this process to guess and verify the 
Nd nodes at distance d, at the same time I can 
decide whether there is a (d+1)-path to z. 

•If z itself is one of my guessed nodes, then it does 
have a path.  Also, if any of my guessed nodes has 
an edge to z, then z has a path.  If neither of 
these things happen, and the guessing was 
correct, then z does not have a (d+1)-path.
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Inductive Counting for NL

•I don’t have space to remember the nodes I’ve 
seen, but I can remember how many nodes with 
(d+1)-paths there are.  (I’m doing the guess and 
verify process again for each node I’m checking.) 

•If all the guesses and verifications are correct, we 
have used the value of Nd to compute Nd+1. 

•By repeating this process, I will either get the 
correct value of Nn-1 or my procedure fails.
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NLBA’s and Context-Sensitive

•When Immerman and Szelepcsenyi proved their 
result (and won the Godel Prize in 1995), part 
of their fame was due to solving a problem older 
than the formalization of NL and co-NL. 

•We saw earlier that the context-sensitive 
grammars define the class of languages we’ve 
called NLBA’s, nondeterministic linear bounded 
automata.  These are Turing machines that are 
limited to the read/write space used to store the 
original input.
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NSPACE(f) = co-NSPACE(f)
•If f is any space bound with f(n) ≥ log n, we can 

apply the same argument to show that NSPACE(f) 
is equal to co-NSPACE(f).   

•(There are subtleties about whether f is space 
constructible, but for convenience we will 
assume that it is.) 

•If M is an NSPACE(f) machine, then it has 2O(f) 
nodes in its configuration graph.  Let X be a co-
NSPACE(f) language, so that X-bar = L(M).  All 
we need to show w ∈ X is that there is no 
accepting path on M with input w. 

117



NSPACE(f) = co-NSPACE(f)

•If M is an NSPACE(f) machine, then it has 2O(f) 
nodes in its configuration graph.  Let X be a co-
NSPACE(f) language, so that X-bar = L(M).  All 
we need to show w ∈ X is that there is no 
accepting path on M with input w.  

•By the algorithm we’ve demonstrated, we can 
nondeterministically test whether there isn’t such 
a path using space log(2O(f)) = O(f).  So 
membership in X is in NSPACE(f) as well as X-bar.
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ATIME(f) ⊆ SPACE(f)
•So in these two lectures we’ll present the 

Meyer-Stockmeyer Alternation Theorem, 
following Sipser’s argument in Chapter 10.3. 

•In this lecture we’ll characterize a time-
bounded alternating TM (called an ATM, 
potentially confused with an Automated 
Teller Machine or Asynchronous Transfer 
Mode).   

•Let O(f(n)) be a time bound, with f(n) ≥ n. 
Our first result will simulate ATIME(f) with 
deterministic space O(f).
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Recursion Again
•We’ve essentially seen this argument already with 

the Formula Game of Lecture 12.2. 

•We first alter the machine to add a clock, so that 
every configuration has a time step. 

•We want to compute the acceptance (or the 
winning strategy) of every configuration c for 
every time step t. 

•If we know the result for of every node c 
reachable on time step t+1, we can compute the 
result for c.
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SPACE(f) ⊆ ATIME(f2)
•For the other result in this lecture, we see how 

well we can attack a deterministic space-bounded 
problem using alternating time. 

•We don’t actually prove that ATIME(f) = 
SPACE(f), though we can come close. 

•Remember that a computation with O(f) space 
uses 2O(f) configurations.  For either SPACE(f) or 
NSPACE(f), we need to determine whether there 
is a path from the start configuration to an 
accepting one (or the accepting one if we prefer).
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Savitch Again
•But we can solve this path problem using Savitch. 

•We need to express the argument a bit differently 
when we have alternation available. 

•In game semantics, we will define the Savitch 
game, where White will have a winning strategy 
if the desired path exists, and Black wins if not. 

•We begin with White claiming the path exists, for 
a number of edges at most t.  White’s move is to 
claim that node a to b exists because there is a 
paths of length at most t/2 from a to c and c to b.

122



ASPACE(f) ⊆ DTIME(2O(f))
•Let’s first consider the class ASPACE(f), 

again where f(n) ≥ log n. 

•In the game semantics, we have a game 
where White wants to make the machine 
accept and Black wants it to reject, and 
each state of the machine is assigned to one 
of the two players to choose the next move. 

•The first question, as always with space 
bounded classes, is the number of 
configurations that the machine has.
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Configuration Graphs Again
•There are cf(n) tape cells in the read-write memory, 

n locations in the read-only input, O(f(n)) possible 
head positions in the read-write memory, and 
O(1) possible states. 

•Multiplying this out, again since f(n) ≥ n, there 
are 2O(f) total configurations. 

•As we’ve seen we will use a marking algorithm to 
determine the winning strategy. 

•We can also put a clock on the machine, so that 
there are no cycles in the directed graph of moves.
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DTIME(2O(f)) ⊆ ASPACE(f)
•So now we turn to the remaining piece of the 

Alternation Theorem, using alternating space to 
determine the result of a DTIME(2O(f)) 
computation. 

•We can view the computation as a tableau, with 
2O(f) cells in each row, and 2O(f) total rows. 

•But we are now given only f(n) total space. 

•We don’t have room to write the tableau or even 
a row if the tableau, but we can write a pointer 
into the tableau.

125



A Circuit-Like Game
•Also, unlike the tableau in the Cook-Levin 

Theorem, each cell is deterministically defined by 
the three cells next to it in the prior row. 

•We’ll define our game where the position at any 
time is one cell of the tableau.  We’ll use the O(f) 
space given to us to keep track of where we are. 

•The start of the game is the final cell of the 
tableau, where White claims that the contents of 
this cell is the accepting state.  At any given time, 
White is maintaining a claim of the current cell.
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A Circuit-Like Game

•So at a move at some generic row and time step 
for a cell, White first moves by naming the three 
adjacent cells at the prior step.  Unless these 
three cells verify White’s claim about the original 
cell, White loses the game immediately. 

•Black then picks one of the three cells, and the 
game continues with White claiming the contents 
of that new cell based on her prior moves. 

•Let’s prove that the player has the right strategy.
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A Circuit-Like Game
•What if the DTIME machine accepts?  In this case 

White can make a correct claim at the start of the 
game.  White can just tell the truth, claiming the 
three adjacent cells have the contents that they 
really have in the actual computation.  At the 
end, White’s final claim matches the input. 

•What if the DTIME does not accept?  Then White 
is lying about the final cell.  At every new move, 
White must lie again about the three new cells, 
since they have to agree with her false claim .
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A Circuit-Like Game

•So at least one of White’s claimed three cells must 
disagree with the actual result of that cell in the 
original computation.  All Black needs is to 
challenge the lie. 

•At each step, then, White must maintain an 
incorrect claim about the current cell. 

•Once we reach the input level, White must now 
be claiming an incorrect t = 0 cell, and will lose.
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Circuit Classes Again

•If we allow ourselves a polynomial number 
of computing elements, we can put one on 
each of the nodes of a polynomial-size 
circuit. 

•The parallel time of the resulting circuit 
depends on the depth of the circuit. 

•The output value of any given gate cannot 
be computed until its input values have 
already been computed.
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Circuit Classes Again
•A given circuit is parametrized by both its 

size, the number of gates, and its depth, 
which is the longest path (in its directed 
graph) from any input node to the output 
node. 

•The depth will in general be proportional to 
the time to compute the circuit, given a 
processor for each gate. 

•So we can study what size and depth 
bounds we can find for different problems.
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Uniformity for Circuits
•We can define complexity classes for languages, in 

terms of size or depth, just as we do this for time 
and space for Turing machine computation. 

•But there are some fundamental complications. 

•If we design a boolean circuit, we have to specify 
its number of inputs.  (Unlike a Turing machine, 
for example, a single computer can operate on any 
number of inputs.) 

•We thus define a circuit family where Cn is a 
circuit for each number n of inputs for each one.
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Uniformity for Circuits
•We could then define the class PSIZE, for example, 

so that a language X is in PSIZE if there exists a 
circuit family such that for each circuit Cn, for 
every bit string w in Σn, w on Cn returns 1 if and 
only if w is in X. 

•But there’s a problem with this definition. 

•Consider the language, say, {1n: n is in ATM in 
binary}.  This is clearly not decidable. 

•But the size complexity of this language is O(1)!
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Uniformity for Circuits
•If we want to define an “easy to compute” 

language in terms of circuit size or depth, we also 
need a new condition called uniformity. 

•For any particular circuit Cn, there must be a way 
to specify the circuit. 

•For example, we define the class UP-PSIZE, for 
poly-size uniform poly-size circuits, to be the 
language X such that (1) Cn has size nO(1) for each 
n, (2) there is a poly-time algorithm that outputs 
the circuit Cn, and (3) ∀w: Cn(w) ↔ w ∈ X.
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UL=PSIZE = UP-PSIZE = P
•Let’s prove that both these versions of uniform 

circuit complexity for poly-size are the same 
class, because both equal P, for poly-time. 

•Let X be in UP-PSIZE, and if I want to know 
whether w ∈ X, with |w| = n, how can I tell? 

•I can construct the circuit Cn, then evaluate the 
result Cn(w), using the Circuit Value Problem we 
showed to be in poly-time. 

•These two poly-time operations are in P.  And 
since L ⊆ P, UL-PSIZE is also contained in P.
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The Class NC
•So now that we can define uniform circuit classes, 

we are ready to define our class of languages that 
are highly parallelizable. 

•The class NC is the subset of UL-PSIZE that has 
circuits of only poly-log depth, still with poly-size. 

•Remember that poly-log(n) means (log n)O(1), any 
constant power raised to O(log n).  Asymptotically, 
any poly-log function is o(n𝜺) for any 𝜺 > 0. 

•It’s perhaps surprising that lots of interesting 
languages are in this seemingly small class. 
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The Class NC0

•The class NC0 consists of fan-in circuit 
families of depth O(1). 

•These are exactly the functions which 
depend on only O(1) of the input values. 

•It’s easy to rule out languages from NC0, 
as long as we can show that the output 
depends on an unbounded number of the 
n input values as n increases.
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The Class AC0

•In the class AC0, any output bit may depend on 
any input bit. 

•Here’s an example of an AC0 function — take 
two n × n boolean matrices A and B, and 
output the product AB.  (In a decision 
language, we could return one of the bits of the 
product.) 

•Since (AB)i,j is the OR of Ai,k ∧ Bk,j for all k from 
1 to n, the computation uses only O(1) depth 
using unbounded fan-in, one for OR, one for ∧.
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The Class NC1, included in L

•The next class in the hierarchy is NC1, with 
O(log n) depth, poly-size, and fan-in O(1). 

•Here we start getting some interesting upper 
bound results in this class. 

•In the following lecture we’ll prove that any 
regular language is in NC1. 

•We can also do some interesting integer 
arithmetic in NC1, like MAJORITY and binary 
multiplication.
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The Class AC1, containing NL
•Now we connect L and NL to the class 

AC1.  We’ll show that NL ⊆ AC1, with the 
circuit family to be UL-uniform.  (The 
circuit family can be shown to be even 
more uniform than that, given the right 
definitions.) 

•We remember that the PATH language (G, 
s, t), where G a directed graph and s and t 
nodes such that there is a path from s to t, 
is complete for NL under L reductions.
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PARITY in NC1

•The PARITY problem is to input n bits and 
determine whether there are an even or 
odd bits set to 1.  The language PARITY is 
{w: |w|1 is odd}, or {w: XOR of wi = 1}. 

•As we mentioned, by a harder theorem, 
this problem cannot be solved in AC0, even 
if the circuit family can be totally non-
uniform.  But it’s not hard to show that 
PARITY is in NC1.
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Regular Languages in NC1

•So it’s a natural question to compare the 
“easy” languages, from our study of 
regular languages, to other classes of 
languages. 

•What if D is a DFA, and X is the language 
L(D).  Can we build a circuit family with 
polynomial size and O(log n) depth with 
fan-in 2?  It turns out that we can.
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Integer Arithmetic in NC1

•As we showed earlier, we can add two 
binary numbers in AC0, but not in NC0. 

•What we’d like to do is iterated addition, 
where say we are given n n-bit numbers 
and want to compute their sum (in 
n+logn bits, as it happens). 

•This would be useful for two other 
problems we’d like to solve: MAJORITY 
and MULTIPLICATION.
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MAJORITY and MULTIPICATION

•The MAJORITY problem is to take n bits 
and ask whether there are more 1 bits 
than there are 0’s in the string.  (Ties are 
not a majority of 1’s.) 

•This can be done with iterated addition.  
Just treat each bit as a number equal to 0 
or 1, and compute the sum of these n 
numbers.
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A Trick for Iterated Addition

•But if we tried to add n numbers together 
with the method we used to add two of 
them, we would make a tree of depth 
O(log n), which would get us depth O(log 
n) if we used unbounded fan-in.  The tree 
of AC0 computations would require AC1. 

•Using fan-in 2 to add two numbers, we’d 
get a tree of NC1 operations to get NC2.
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A Trick for Iterated Addition

•So here’s a trick.  We change the 
representation for numbers to signed 
digit base four (SDB4).  One 
consequence is that there are different 
strings to represent the same number. 

•For example, 23ʹ2ʹ13 represents the 
number 2⋅44 - 3⋅43 - 2⋅42 + 1⋅41 ⋅ 3⋅40 = 
512 - 192 - 32 + 4 + 3 = 295.  The same 
number could be 112ʹ21ʹ = 256 + 64 - 32 
+ 8 - 1 = 295.
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Boolean Circuits and Formulas
•Remember that each node of a boolean 

circuit is either an input gate or is computed 
by a gate from one or more earlier 
computed gates.  Its fan-in is the number of 
gates whose values are used. 

•It is possible that every circuit has fan-out of 
1, so that the circuit is a tree or a formula 
instead of just a directed acyclic graph. 

•It’s a natural question whether circuits 
become weaker if they must be formulas.
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Balancing Trees in NC1

•An arbitrary poly-size circuit could have very 
large depth, almost as large as its depth.  So 
we’ll alter it somehow in this case to reduce 
its depth while maintaining an equivalent 
function. 

•We’ll also simplify the circuit to have only 
AND and OR gates, except for input gates for 
literals (variables and negated variables).  
You’ll consider on HW#6 how any poly-size 
circuit can be put in this form.
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Working Toward Balance

•We can now draw the tree 
with h as g’s ancestor, with 
w/4 ≤ w(h) ≤ 3w/4. 

•We’ll now build a more 
balanced tree, with slightly 
greater size, but with the 
same function as the original 
tree. 

•Here are some pieces.
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Working Toward Balance

•Let’s convince ourselves that 
the new tree has the same 
function as the original tree. 

•There are two cases when h 
is true and when h is false.
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Working Toward Balance

•Each of these four pieces has 
weight ≤ 3w/4. 

•The total weight is at most 
4(3w/4)+5 = 3w+5. 

•The new depth has added 3.
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Alternating Logspace in P

•We saw that in the Alternation Theorem, 
languages with unlimited alternation with 
log space are exactly the languages in P. 

•If we have no alternation in a log space TM, 
we get the language L. 

•What we’ll see today is what happens when 
we add some alternation to a log space TM. 

•This turns out to give us a spectrum of 
classes from L through P, ranging across NC.
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Constraints on AL Machines
•So how can we parametrize AL machines to 

limit their amount of alternation? 

•One natural method is to count the number 
of alternations in the ATM computation. 

•In the game semantics, we count every time 
that a White move is followed by a Black 
move, or vice versa.  In the version with 
existential states and universal states, we 
count an alternation every time we change 
from one state type to the other.
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The General Result

•The two main theorems are: 

•ATM’s with log space and O(login) 
alternations are equivalent to ACi, for i ≥ 1 

•ATM’s with log space and O(login) time are 
equivalent to NCi, for i ≥ 2. 

•We’re not going to prove this theorem here, 
but we’ll tell you about some special cases, 
and give an idea about how the proof works.
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Solving Circuits with ATM’s

•But without the technical details, the main 
idea of simulating circuits with alternation is 
pretty much what we saw in the Alternation 
Theorem, with the Circuit Game. 

•We start the game at the output node.  
When the current node is an ∨, White picks 
a child of that node.  When it is ∧, Black 
picks a child.  The game ends when at an 
input, when White wins if the value is true 
and Black if it is false.
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Solving ATM’s with Circuits

•What if we have an ATM, with the time or 
alternations constraints, and we want to design 
a circuit with the proper size and depth? 

•Essentially we make a gate for each state of the 
ATM game.  There are only polynomially of 
them because it’s log space. 

•We assign edges for the circuit based on the 
moves that White and Black have available.
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