CS 501: Formal Language Theory

Midterm Solutions

Note: LATEX template courtesy of UC Berkeley EECS dept.

1. $(10 \times 2 \text{ points})$ Unjustified True/False Questions.

- (a) FALSE. L is not regular. The infinite set $\{\varepsilon, 0, 0^2, \ldots\}$ is a set of pairwise L-distinguishable strings.
- (b) FALSE. Take $L = (abc)^*$, but then L^{++} is the set of all strings over $\{a, b, c\}$ with equal numbers of a's, b's, and c's, which is irregular.
- (c) TRUE. Otherwise, if p is the pumping length, $a^p b^{2p} c^p$ cannot be pumped.
- (d) TRUE. Simulate M on all possible (finitely many) inputs of length at most k.
- (e) TRUE. Convert N to DFA by the subset construction, use graph search to reach any state containing two or more accept states of the original NFA.
- (f) TRUE. Modify the PDA to keep track of the maximum stack height so far.
- (g) TRUE. Graph search to find the set F of accept states reachable from the starting state, and then check reachability between every pair in F.
- (h) FALSE. Rice's Theorem.
- (i) FALSE. The TD languages \emptyset and Σ^* are exceptions.
- (j) TRUE. Output YES iff there exist i, j with $|a_i| \le |b_i|$ and $|a_j| \ge |b_j|$.
- 2. (5 × 6 points) Justified True/False Questions. For each of the following questions, indicate whether it is TRUE or FALSE, and provide a brief justification (i.e. either a proof or a counterexample).
 - (a) TRUE. Replace all transitions in an L-DFA by 0,1 labels. This creates an NFA for L'.
 - (b) FALSE. Take a 2020-state DFA for L and add a dummy state.
 - (c) TRUE. We can generate it by the grammar $S \to TST|B, B \to TTB|T1, T \to 0|1.$
 - (d) TRUE. Simulate an doubly-infinite TM by a two-tape ordinary TM, containing the contents of the left half of the tape reading backwards, and the contents of the right half reading forwards. The converse is trivial.
 - (e) TRUE. Given a PDA for X, construct a PDA for $f^{-1}(X)$ by storing each state as an ordered pair of an X-state, together with a suffix string of f(a) for any $a \in \Sigma$ (there are finitely many of them). On reading an input letter a, we transition through a sequence of states for f(a) before moving onto the next letter.
- 3. (5 points) Hanging TMs. We reduce from A_{TM} . Given an instance $\langle M, w \rangle$ of A_{TM} , we construct a HTM N as follows. On input x, it ignores its input and writes w on its tape, starting from the second cell of the tape, after marking the leftmost cell with a special symbol. It then simulates the computation of M on w, ensuring every time it gets to the marked cell, it goes back ("resets") one step to the second cell. If M accepts, N also does. Then, note that $\langle M, w \rangle \in A_{TM}$ if and only if $\langle N, w \rangle \in A_{HTM}$, proving the reduction. Of course, the w in the RHS could be replaced by any string.

4. (10 points) Replicating Nonterminals.

- (a) Given a CFG, we can draw a graph whose vertices are the nonterminals, with an arc between two vertices if there is a grammar rule where the corresponding "tail" terminal derives a string containing the "head" terminal. Then, a specific non-terminal is replicating if and only if the corresponding vertex is part of a directed cycle. This is a well-known graph theory problem and has plenty of polynomial-time algorithms for it.
- (b) The CFLPL proof shows that if a string is sufficiently long (longer than its pumping length p), then its parse tree has a replicating terminal. It follows that if there are no replicating non-terminals, all strings in the language must be bounded above by a constant, and so in fact the language is then finite.
- 5. (10 points) Complementary Check-In. If L is decidable by M, we can build a complementenumerator as follows: take all strings in Σ^* in lexicographical order, and for each string, run M on it and output it if and only if M rejects it.

Conversely, if \overline{L} is finite, then it is decidable, and so is L. Otherwise, a decider for L works as follows: on input w, run a complement-enumerator for \overline{L} until it prints either w (in which case, reject), or a string lexicographically after w (in which case, accept).

6. (10 points) Reversal in Fortunes. We will reduce from $\mathsf{ALL}_{\mathsf{CFG}}$. Given an arbitrary instance $\langle L \rangle$ of $\mathsf{ALL}_{\mathsf{CFG}}$, extend its alphabet by the symbol #, and modify the grammar (straightforwardly) to obtain the language $L' = L \# \cup \# \Sigma^*$. This is the union of two languages -L# is the set of strings in L concatenated with the new symbol #, and $\#\Sigma^*$ is the set of strings over the original alphabet Σ with an additional # appended at the beginning. We claim that $\langle L' \rangle \in \mathsf{ReverseCFL}$ if and only if $\langle L \rangle \in \mathsf{ALL}_{\mathsf{CFG}}$. Of course, if L' is its own reverse, then the reversal of every string in $\#\Sigma^*$ must be in L#, which is the same as saying $L = \Sigma^*$. Conversely, if $L = \Sigma^*$, then of course L' is its own reverse by design. This completes the reduction.

7. $(3 \times 5 \text{ points})$ A Resolved Issue.

- (a) Suppose x and x' go to the same state in D, and suppose WLOG that x is unresolved and x' is resolved. By definition, there are suffixes y and z such that $xy \in L$ and $xz \notin L$. Note that $x'y \in L$ and $x'z \notin L$, as the DFA processes the suffixes in the same way for both strings from the same state. So x' cannot be resolved, contradiction.
- (b) By part (c), all resolved strings in *D* end up in at most two terminal states, which must have all their transitions into themselves. Therefore, any state in *D* with at least one transition into a different state corresponds to an unresolved string.
- (c) By the Myhill-Nerode Theorem, we claim all resolved strings in L form a single class. Otherwise, say x and x' are both resolved strings in L, but $x \not\sim_L x'$. This means WLOG there is some suffix w such that $xw \in L$ and $x'w \notin L$. Also, $|w| \ge 1$, as $x, x' \in L$. But then, $x'w \notin L$, but $x'\varepsilon \in L$, so x' cannot be resolved, contradiction.

By the same logic, all resolved strings not in L also form a single class.

Therefore, the resolved strings are partitioned into at most two parts (those in L and those not in L), and this corresponds to 0, 1, or 2 states.