
CS 501: Formal Language Theory Spring 2021

Final Solutions

Note: LATEX template courtesy of UC Berkeley EECS dept.

1. (10 × 2 points) Unjustified True/False Questions.

(a) FALSE. Any w that has two 0s or 1s in a row is in DOUBLED-SUBSTRING. Any string of length
≥ 4 without 00s or 11s must contain 0101 or 1010 and thus also is in DOUBLED-SUBSTRING. So
DOUBLED-SUBSTRING is co-finite and therefore regular.

(b) TRUE. Any NFA with at most 10 states has an equivalent DFA with at most 210 = 1024 states.
We can fill the states out to exactly 2021 states by adding unreachable dummy states.

(c) TRUE. Take a DFA D for L, and create an NFA N for expand(L) by adding a self-loop labeled
Σ to every state.

(d) TRUE. Let P be a PDA for L. We make a new PDA P ′ for contract(L). We want P ′ to read the
letters of u while it is simulating P on the letters of v, where u is a subset of the letters of v. So
P ′ can either read a letter of its input, processing P for it, or nondeterministically “imagine” a
new letter without reading any input, processing P for this letter. If P ′ accepts, the string that
it simulates for P is the string v, and the string u that it actually reads and accepts is obtained
by deleting letters of v.

(e) FALSE. Let L(G) = {anban : n ≥ 0}, which is clearly a CFL (e.g. S → aSa|b). Let w be a
sufficiently long string in L(G). No matter how we pick v and y, if both of them are simultaneously
pumped with different sizes, there will be violations of L(G) everywhere.

(f) TRUE. Given G and w, note that L(G) is a CFL and wΣ∗ is regular, so their intersection is a
CFL. We can construct the corresponding PDA, and test whether this PDA accepts any strings
at all. Each of these steps is decidable.

(g) FALSE. Given any TM, M is Turing-recognizable by definition, so this language is the set of all
TMs. Rice’s Theorem does not apply because this is not a non-trivial property of languages.

(h) TRUE. Let c be the number of letters in W . For any fixed n, there are (c+1)n
2

possible candidates
for the puzzle solution we are asking for. Each one can be written in O(n2) bits. In PSPACE, we
can try every candidate solution, writing down one of them at a time, and it should be clear that
with no other memory than the fixed word list and O(n2) bits to count the squares, we can test
whether a candidate puzzle follows the rules and count the black squares in it.

(i) TRUE. If n is large enough, we can fit every word in the list once, and we are now forbidden to
repeat them. So the fewest number of black squares we can have is n2−w, where w is the sum of
the lengths of the words in the list. So if k < n2 − w, the answer is NO. However, if k ≥ n2 − w,
the answer is YES. So for sufficiently large n, we’re comparing two integers, which is in P.

(j) FALSE. This is the same as STRONGLY-CONNECTED, which is NL-complete. By the Space
Hierarchy Theorem, NL is a strict subset of PSPACE, so PAIRWISE-ACCESSIBLE cannot be
PSPACE-complete.

2. (5 × 6 points) Justified True/False Questions. For each of the following questions, indicate
whether it is TRUE or FALSE, and provide a brief justification (i.e. either a proof or a counterexample).

(a) TRUE. 2021SAT is in NP, as the witness is the set of satisfying assignments. Given a CNF
formula ϕ, add eleven dummy variables y1, . . . , y11 to it, and consider ϕ′ = ϕ ∧

∧
1≤i≤11(yi ∨ yi).

Observe that if ϕ is satisfiable, then ϕ′ has at least 211 satisfying assignments, and so is in
2021SAT. Conversely, if ϕ′ has many satisfying assignments, each of them corresponds to a
satisfying assignment for ϕ.

1-1

Homework 1 1-2

(b) TRUE. Mark all sinks as LOSING, then iteratively mark nodes WINNING if they lead to some
LOSING node, and LOSING if they lead to all WINNING nodes. At the end of n passes, nodes
will be unmarked (DRAWING), or marked WINNING or LOSING, so the game is determined.
The total time taken is O(nm).

(c) TRUE. If such an X existed, choose an arbitrary PSPACE language Z, and note that Z ≤P X.
Because X is in NP, so Z is in NP as well. Since Z was arbitrary, this means PSPACE ⊆ NP,
which therefore implies NP = PSPACE.

(d) TRUE. Of course, ACYCLIC-REACH is in NL, as it is a special case of reachability. To show
hardness, take an arbitrary NL machine M , equip it with a polynomial-time clock as we have
seen in class, that keeps track of the number of steps in the calculation using O(log n) portion
of the work tape, and rejects once the number of steps is enough for us to know we are looping.
This creates an acyclic graph, so now the rest of the usual REACH proof goes through.

(e) FALSE. The problem is undecidable, by reduction from ALLCFG. Given an arbitrary gram-
mar G′, construct a grammar G that accepts Σ∗, and note that 〈G′〉 ∈ ALLCFG iff 〈G,G′〉 ∈
GRAMMAR-SUBSET.

3. (5XC + 5 points) Product Placement.

(a) The original entries are in [−2n, 2n], and so they are at most n bits long. In one product with
entries of at most n bits, every entry of the product is obtained by multiplying two numbers,
and then adding n of these products together. We will get at most 2n bits in each product,
then at most 2n + log n bits in the new entry, as the maximum possible value of this sum is
n · 22n = 22n+logn. We can coarsely upper bound this by 4n. After log n many iterations of this,
we are left with at most 4logn · n = n3 bits in each final entry.

(b) We argued that a single matrix product requires multiplying two numbers, and then adding n
of these products together. From lecture, we know these operations are both NC1, so the entire
process can be done in NC1 as well. To get the n-way product, we create a binary tree of 2-way
matrix products. The resulting depth of the tree is log n per 2-way matrix multiplication, and so
the final depth is O(log2 n). The size remains polynomial in n, and so this problem is in NC2.

4. (10 points) Symbolic Gesture. To show that LETTER-REACHABILITY is Turing-recognizable, just
observe that we can dovetail M on all of Σ∗, and keep track of the symbols M writes on its tape. As
soon as the symbol a appears, we accept.

To show LETTER-REACHABILITY is undecidable, at the outset, we observe that Rice’s Theorem is
not applicable. Instead, we reduce from ATM. Given an instance 〈M,w〉 of ATM, we construct a TM
M ′ that on any input x, ignores the input and simulates M on w. We modify the internal simulation
of M so that immediately before entering the accept state, it writes a symbol σ (that does not appear
anywhere else in the tape alphabet), and then enters the accept state. This is clearly constructible,
and note that 〈M,w〉 ∈ ATM if and only if 〈M ′, σ〉 ∈ LETTER-REACHABILITY.

5. (10 points) Separate Checks. SEPARATED-EDGES is trivially in NP, as the certificate is the set of
k pairwise separated edges.

To show SEPARATED-EDGES is NP-hard, we reduce from INDEPENDENT-SET. Given an instance
〈G, k〉 of INDEPENDENT-SET, we construct the following graph G′. Start from G, and for each vertex
vi of G, we add a different vertex v′i and connect it to vi. We claim that 〈G, k〉 ∈ INDEPENDENT-SET
if and only if 〈G′, k〉 ∈ SEPARATED-EDGES.

If G has an independent set of size k, then the new edges attached to those vertices form k pairwise
separated edges in G′. Conversely, if G′ has k pairwise separated edges, pick an endpoint in G from
each of them; note that this is always possible, as each edge in G′ has at least one endpoint in G;
furthermore, we pick k distinct vertices in this way, as the original edges are separated. Finally, notice
that these k vertices form an independent set in G. Clearly the construction is doable in polynomial
time, completing the proof.

Homework 1 1-3

6. (10 points) Accept the Emptiness. Of course, ACFG ∈ P, by the CYK algorithm discussed in
class.

To show that ACFG is P-complete, we will reduce from ECFG (and use the closure of P under com-
plementation). Take an arbitrary instance 〈G〉 of ECFG, and go through all the rules, converting each
terminal symbol that ever appears into ε. Call the resultant grammar G′. Then, we claim 〈G〉 ∈ ECFG

if and only if 〈G′, ε〉 ∈ ACFG. This should be obvious: if G parses any string, the same sequence of
derivations in G′ yields ε; conversely, if G does not parse any string, then G′ cannot parse ε either.
The reduction takes a linear sweep through the read-only input to change terminal symbols, and is
therefore logspace.

7. (6 + 9 points) A Resolved Issue.

(a) We can easily see that TRIGRAM-SUBSTITUTION ∈ NPSPACE, by nondeterministically guessing
a sequence of S-moves on the input word u, and checking whether we end on v after applying
each move legally. Using PSPACE = NPSPACE, we are now done.

(b) To show PSPACE-hardness, start from an arbitrary PSPACE machine M , and an arbitrary string
w. We can now modify the machine M to clean up its tape before accepting, and construct rules
of the form cqa → cbr for each transition function of the form δ(q, a) = (r, b, R), and cqa → rcb
for each function of the form δ(q, a) = (r, b, L). Note that these trigram substitutions capture
precisely the legal moves of M . Let the set of rules constructed in this way be called S. Finally,
let z = qaccept#

|w|−1, where # denotes the empty tape symbol. Then, observe that M accepts
w if and only if 〈w, z, S〉 ∈ TRIGRAM-SUBSTITUTION. Specifying the construction clearly takes
polynomial time, so we are done.

