
CMPSCI 501: Formal Language Theory Spring 2021

Final Review Sheet
Rik Sengupta

Here are some topics that we covered in class. This list is by no means exhaustive, but may be useful as an exam prep tool.

List of topics
Section Problem or Topic Description or Technique

Regular Languages

DFAs
NFAs and equivalence with DFAs The subset construction
Regular expressions Inductive definition
DFA-recognizable ≡ regular Inductive proof using NFAs
Closure properties Most set-theoretic / group-theoretic operations
The Pumping Lemma Proving a language is non-regular
L-equivalence and L-distinguishability Proves lower bounds on size of DFA state space
The Myhill-Nerode Theorem Alternative proof of non-regularity

Context-Free Languages

CFGs
Ambiguity Leftmost derivations to fix this
Chomsky Normal Form Establishes upper bounds
PDAs Must be nondeterministic
PDA-recognizable ≡ CFL
Closure properties Some set-theoretic / group-theoretic operations
The Pumping Lemma Proving a language is non-CF

Turing Machines
Definitions
Computation histories Low-level / representations

Decidability

ADFA, ANFA, ALBA Decidable (simulation)
EDFA, ENFA, ECFG Decidable (graph search)
EQDFA Decidable (symmetric difference)
ACFG Decidable (derive from CNF)
any CFL Decidable (use the ACFG -decider)

Undecidability

ATM Undecidable (diagonalization)
HALTTM , ETM , REGULARTM Undecidable (reduce from ATM)
ATM Unrecognizable
ELBA, ALLCFG , PCP , EQ2DIM -DFA Undecidable (computation histories)
EQCFG Undecidable (reduce from ALLCFG)
Computable functions, mapping reductions
EQTM Unrecognizable, co-unrecognizable
Rice’s Theorem Determining a nontrivial property is undecidable

Miscellaneous Topics

Enumerators TD and TR characterizations
The Post Correspondence Problem Proofs with computation histories
LBAs
The Arithmetic Hierarchy What is the “quantifier depth” of a problem?
The Recursion Theorem A TM can obtain its own description
Kolmogorov complexity String compressions and associated results

1-1

List of topics
Section Problem or Topic Description or Technique

Time Complexity

P, NP, coNP, NP-complete, NP-hard
PATH , RELPRIME , etc. ∈ P, because of poly-time algorithms
HAMPATH , COMPOSITES , etc. ∈ NP, because of poly-time verifiers (or certificates)
SAT , 3SAT NP-complete (Cook-Levin)
Polynomial time reductions
CLIQUE , VERTEX -COVER, SUBSET -SUM ,
HAMPATH , UHAMPATH , 3COLOR NP-complete (reduce from SAT or 3SAT)
MAX -CUT , DOMINATING-SET ,
SET -COVER, HITTING-SET NP-complete (reduce from various other problems)

Space Complexity

PSPACE, L, NL, PSPACE-/NL-complete Examples of canonical problems
SAT , and almost all standard problems ∈ PSPACE, because of poly-space algorithms
Savitch’s Theorem PSPACE = NPSPACE
TQBF PSPACE-complete (recursive calls)
FORMULA-GAME , GG PSPACE-complete (reduce from TQBF)
Log-space reductions
PATH NL-complete (accepting configurations)
NL = coNL Immerman-Szelepcsényi (show PATH ∈ NL)

Advanced Topics

Time/Space Hierarchy Theorems (Statements only)
Circuits size, depth, complexity, gates, fan-in

PRAM , NC i, AC i, TC i, branching programs Hierarchies and canonical problems
Alternation Space-time tradeoff for alternation

Miscellaneous Topics
The Polynomial Hierarchy PH ⊆ PSPACE
The Alternation Theorem AP = PSPACE, AL = P, APSPACE = EXPTIME
P-completeness CVP

Some useful definitions and terminology

1. Turing Machines and Strings

• Dovetailing is the concept of running a single machine in parallel on many different inputs, as if it were running
simultaneously on all of them. Typically, this comes up in computation theory proofs, where we can simulate this
behavior on an ordinary TM M as follows: let σ1, σ2, . . . be a lexicographical enumeration of all strings in Σ∗. For
i = 1 to ∞, run M for i steps on machines σ1, . . . , σi. This is called dovetailing, as eventually we are guaranteed to
simulate any specific move by the TM move on every possible finite input.

• Lexicographical ordering in this course is the ordering where we sort by length first, and then alphabetically within
strings of the same length.

2. Graphs

• An undirected graph G = (V,E) is connected when there is a path in G between any pair u, v ∈ V .

• For G = (V,E), a subgraph H is spanning if it includes all vertices in V . A spanning tree of G is a connected acyclic
subgraph that spans G.

• The complement of a graph G, denoted G, is typically defined as the graph obtained by taking the same vertices, and
flipping the edges and non-edges. Formally, if G = (V,E), then Ḡ = (V,

(
V
2

)
− E).

• A graph G is bipartite if its vertices can be partitioned into two subsets U and V such that all edges in G go from U
to V (i.e. there is no edge internal to U or V). A graph G is k-partite if its vertices can be partitioned into k subsets
U1, . . . , Uk such that all edges in G go from Ui to Uj for i 6= j.

• A complete graph on n vertices, denoted Kn, is the graph on n vertices such that any two of these vertices has an
edge between them. A complete bipartite graph Km,n consists of m vertices U and n vertices V such that there is an
edge between any u ∈ U and v ∈ V . It is clear that Kn has

(
n
2

)
edges, while Km,n has mn edges.

• A clique of size k in a graph G is a Kk-subgraph in G. An independent set of size k consists of k distinct vertices in
G that are pairwise not connected by an edge. It is clear that an independent set of size k corresponds to an induced
K̄k in G.

• A proper k-coloring of a graph G is a way to assign k or fewer colors to the vertices of G such that any pair
of adjacent vertices receives different colors. Bipartite graphs correspond precisely to 2-colorable graphs; k-partite
graphs correspond to k-colorable graphs; Kn is n-colorable but not n′-colorable for any n′ < n. Km,n is 2-colorable.

• For a graph G, a vertex cover is a subset S of vertices such that every edge of G is incident on at least one vertex in
S. It can be proved that a vertex cover in G corresponds bijectively to an independent set in G (why?).

3. Boolean Formulas

• A variable is defined in the usual way: it is a symbol that takes a Boolean value, either 0 or 1. A literal is either a
variable or its negation. The formula (x1 ∨ x2) ∧ (x̄1 ∨ x3) has three variables and four literals. Note that a formula
on a set of variables does not need to contain all the variables.

• A clause consists of either a single literal, or a maximal disjunction (ORs) of literals. The formula above has two
clauses.

• A formula is in conjunctive normal form or CNF if it is either a single clause, or a conjunction (AND) of clauses. The
formula above is in CNF.

4. Miscellaneous

• A certificate (or a witness) is a string that certifies the answer to a computation, or provides a “proof” of membership
of a word in a given language. In this course, we have used certificates typically for proving membership in NP and
NL.

Some random thoughts and notes

1. Typically, showing that a statement is true needs a proof (usually an argument); showing it is false needs a counterexample
(usually a construction).

2. Remember that coNP is not the complement of NP. By definition, a problem X is in coNP if and only if X is in NP. Why
does this not imply coNP and NP are not complements?

3. For each complexity class (e.g. undecidable, unrecognizable, un-corecognizable, P, NP, NL, etc), you should know a
canonical example of a complete problem for that class, for ease of reductions.

4. Remember the generic template for showing a problem X is not in a particular class (e.g. decidable). First, pick a canonical
problem Y that is known to also be in that class. Take an arbitrary instance of the problem Y , and use that instance to
construct an instance of the problem X with the guarantee that the X-instance is in X if and only if the Y -instance is in
Y (i.e. you are using a hypothetical “black box” procedure for X to conclude that problem Y cannot be too much harder
than X, which is a contradiction, proving such a black-box procedure cannot exist for X. That’s the tl;dr version of a
reduction.

5. Be careful about which results or statements apply to directed graphs, and which ones to undirected graphs (and which
ones apply to both). The HAMPATH problem is NP-complete both for directed graphs and for undirected graphs. The
PATH problem is NL-complete for directed graphs, but for undirected graphs it can be shown to be in L.

6. Be careful about which results or statements apply to positive integers, and which ones to all integers, and other similar
assumptions. The SUBSET -SUM problem can be shown to work with all integers, not just for positive ones. We often
state it for multisets, but it makes no difference if we defined it as a set instead. Be aware of these assumptions.

7. In particular, note that coNP ∩ NP contains P. We do not know if it equals P, however. Note the difference with
Recognizable ∩ co-Recognizable = Decidable.

8. To show a problem is complete for a complexity class X, you need to show TWO things: the problem is in X (an upper
bound), and the problem is X-hard (a lower bound). This last condition means all problems in X are reducible (in the
meaningful sense, depending on the context) to X.

9. Be careful about which class contains which other class. We know the chain L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME
⊆ EXPSPACE ⊆ DECIDABLE ⊆ RECOGNIZABLE. By the Hierarchy Theorems, we know some of these containments
are strict, but we also do not know about some. It is very important to remember some strict containments, noting that
the Hierarchy Theorems only apply to classes of the same type (space or time). For instance, we know L (PSPACE (
EXPSPACE, and P (EXPTIME.

10. Remember that the theorem NL = coNL is extremely useful. It means in order to show membership in NL, it suffices to
show membership in coNL (and vice versa).

11. Remember all log-space reductions are polynomial-time reductions as well, but we do not know if the converse is true.

12. For each complexity class, you should know a canonical example of a problem in that complexity class. For instance, you
should know MAJORITY is in NC 1, and that COMPOSITES ∈ NP. Most importantly, you should understand why.

13. For many complexity classes, you should understand the notion of being complete for that class in terms of reductions.
The same notion of reductions will not in general hold for all complexity classes: for instance, it makes no sense to use
polynomial time reductions for NL-completeness.

14. You should know which standard operations a class is closed under (keeping in mind that we do not know the answer to
many of these). Given any complexity class, is it closed under union? Concatenation? Intersection? Complementation?
Kleene star? It is a good idea to see which of these is obvious. For instance, any deterministic complexity class is closed
under complementation. This is not necessarily true of nondeterministic classes.

15. Keep in mind many polynomial-time algorithms you are familiar with can actually be implemented in smaller complexity
classes. For instance, from algorithms courses, we are used to thinking about the undirected PATH problem as an O(m+n)
algorithm (BFS or DFS), so PATH is clearly in P. However, as we know from class, the undirected PATH problem is a
canonical example of a problem in L as well.

16. Finally, one nice big-picture takeaway from this course is that there are three models of complexity that are all in some sense
equivalent: Turing Machines, circuits, and logical descriptions. There are notions of complexity for each of them that turn
out to be equivalent, and so they all divide, sort, and neatly categorize the world of problems into the so-called complexity
zoo, where any problem can be slotted into its appropriate place. There is much we do not know about the zoo, and it is
constantly expanding as new complexity classes are defined every week, but the zoo itself forms the underlying structure
of all computational problems, and rigorously defines what it means to be an intractable problem, what constitutes an
easy one, and what the limits are to what we can do.

