Final Review Sheet

Rik Sengupta

Here are some topics that we covered in class. This list is by no means exhaustive, but may be useful as an exam prep tool.

List of topics		
Section	Problem or Topic	Description or Technique
Regular Languages	DFAs NFAs and equivalence with DFAs Regular expressions DFA-recognizable \equiv regular Closure properties The Pumping Lemma L-equivalence and L-distinguishability The Myhill-Nerode Theorem	The subset construction Inductive definition Inductive proof using NFAs Most set-theoretic / group-theoretic operations Proving a language is non-regular Proves lower bounds on size of DFA state space Alternative proof of non-regularity
Context-Free Languages	CFGs Ambiguity Chomsky Normal Form PDAs PDA-recognizable \equiv CFL Closure properties The Pumping Lemma	Leftmost derivations to fix this Establishes upper bounds Must be nondeterministic Some set-theoretic / group-theoretic operations Proving a language is non-CF
Turing Machines	Definitions Computation histories	Low-level / representations
Decidability	$\begin{aligned} & A_{D F A}, A_{N F A}, A_{L B A} \\ & E_{D F A}, E_{N F A}, E_{C F G} \\ & E Q_{D F A} \\ & A_{C F G} \\ & \text { any CFL } \end{aligned}$	Decidable (simulation) Decidable (graph search) Decidable (symmetric difference) Decidable (derive from CNF) Decidable (use the $A_{C F G}$-decider)
Undecidability	$\begin{aligned} & A_{T M} \\ & H A L T_{T M}, E_{T M}, R E G U L A R_{T M} \\ & A_{T M} \\ & E_{L B A}, A L L_{C F G}, P C P, E Q_{2 D I M-D F A} \\ & E Q_{C F G} \\ & \text { Computable functions, mapping reductions } \\ & E Q_{T M} \\ & \text { Rice's Theorem } \end{aligned}$	Undecidable (diagonalization) Undecidable (reduce from $A_{T M}$) Unrecognizable Undecidable (computation histories) Undecidable (reduce from $A L L_{C F G}$) Unrecognizable, co-unrecognizable Determining a nontrivial property is undecidable
Miscellaneous Topics	Enumerators The Post Correspondence Problem LBAs The Arithmetic Hierarchy The Recursion Theorem Kolmogorov complexity	TD and TR characterizations Proofs with computation histories What is the "quantifier depth" of a problem? A TM can obtain its own description String compressions and associated results

List of topics		
Section	Problem or Topic	Description or Technique
Time Complexity	P, NP, coNP, NP-complete, NP-hard PATH, RELPRIME, etc. HAMPATH, COMPOSITES, etc. SAT, 3SAT Polynomial time reductions CLIQUE, VERTEX-COVER, SUBSET-SUM, HAMPATH, UHAMPATH, 3COLOR MAX-CUT, DOMINATING-SET, SET-COVER, HITTING-SET	$\in \mathrm{P}$, because of poly-time algorithms \in NP, because of poly-time verifiers (or certificates) NP-complete (Cook-Levin) NP-complete (reduce from SAT or 3SAT) NP-complete (reduce from various other problems)
Space Complexity	PSPACE, L, NL, PSPACE-/NL-complete SAT, and almost all standard problems Savitch's Theorem $T Q B F$ FORMULA-GAME, GG Log-space reductions PATH $\mathrm{NL}=\mathrm{coNL}$	Examples of canonical problems \in PSPACE, because of poly-space algorithms PSPACE $=$ NPSPACE PSPACE-complete (recursive calls) PSPACE-complete (reduce from TQBF) NL-complete (accepting configurations) Immerman-Szelepcsényi (show $\overline{P A T H} \in \mathrm{NL}$)
Advanced Topics	Time/Space Hierarchy Theorems Circuits PRAM, NC ${ }^{i}, A C^{i}, T C^{i}$, branching programs Alternation	(Statements only) size, depth, complexity, gates, fan-in Hierarchies and canonical problems Space-time tradeoff for alternation
Miscellaneous Topics	The Polynomial Hierarchy The Alternation Theorem P-completeness	$\begin{aligned} & \mathrm{PH} \subseteq \mathrm{PSPACE} \\ & \mathrm{AP}=\mathrm{PSPACE}, \mathrm{AL}=\mathrm{P}, \mathrm{APSPACE}=\mathrm{EXPTIME} \\ & \mathrm{CVP} \end{aligned}$

Some useful definitions and terminology

1. Turing Machines and Strings

- Dovetailing is the concept of running a single machine in parallel on many different inputs, as if it were running simultaneously on all of them. Typically, this comes up in computation theory proofs, where we can simulate this behavior on an ordinary TM M as follows: let $\sigma_{1}, \sigma_{2}, \ldots$ be a lexicographical enumeration of all strings in Σ^{*}. For $i=1$ to ∞, run M for i steps on machines $\sigma_{1}, \ldots, \sigma_{i}$. This is called dovetailing, as eventually we are guaranteed to simulate any specific move by the TM move on every possible finite input.
- Lexicographical ordering in this course is the ordering where we sort by length first, and then alphabetically within strings of the same length.

2. Graphs

- An undirected graph $G=(V, E)$ is connected when there is a path in G between any pair $u, v \in V$.
- For $G=(V, E)$, a subgraph H is spanning if it includes all vertices in V. A spanning tree of G is a connected acyclic subgraph that spans G.
- The complement of a graph G, denoted \bar{G}, is typically defined as the graph obtained by taking the same vertices, and flipping the edges and non-edges. Formally, if $G=(V, E)$, then $\bar{G}=\left(V,\binom{V}{2}-E\right)$.
- A graph G is bipartite if its vertices can be partitioned into two subsets U and V such that all edges in G go from U to V (i.e. there is no edge internal to U or V). A graph G is k-partite if its vertices can be partitioned into k subsets U_{1}, \ldots, U_{k} such that all edges in G go from U_{i} to U_{j} for $i \neq j$.
- A complete graph on n vertices, denoted K_{n}, is the graph on n vertices such that any two of these vertices has an edge between them. A complete bipartite graph $K_{m, n}$ consists of m vertices U and n vertices V such that there is an edge between any $u \in U$ and $v \in V$. It is clear that K_{n} has $\binom{n}{2}$ edges, while $K_{m, n}$ has $m n$ edges.
- A clique of size k in a graph G is a K_{k}-subgraph in G. An independent set of size k consists of k distinct vertices in G that are pairwise not connected by an edge. It is clear that an independent set of size k corresponds to an induced \bar{K}_{k} in G.
- A proper k-coloring of a graph G is a way to assign k or fewer colors to the vertices of G such that any pair of adjacent vertices receives different colors. Bipartite graphs correspond precisely to 2 -colorable graphs; k-partite graphs correspond to k-colorable graphs; K_{n} is n-colorable but not n^{\prime}-colorable for any $n^{\prime}<n . K_{m, n}$ is 2 -colorable.
- For a graph G, a vertex cover is a subset S of vertices such that every edge of G is incident on at least one vertex in S. It can be proved that a vertex cover in G corresponds bijectively to an independent set in G (why?).

3. Boolean Formulas

- A variable is defined in the usual way: it is a symbol that takes a Boolean value, either 0 or 1 . A literal is either a variable or its negation. The formula $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{3}\right)$ has three variables and four literals. Note that a formula on a set of variables does not need to contain all the variables.
- A clause consists of either a single literal, or a maximal disjunction (ORs) of literals. The formula above has two clauses.
- A formula is in conjunctive normal form or CNF if it is either a single clause, or a conjunction (AND) of clauses. The formula above is in CNF.

4. Miscellaneous

- A certificate (or a witness) is a string that certifies the answer to a computation, or provides a "proof" of membership of a word in a given language. In this course, we have used certificates typically for proving membership in NP and NL.

Some random thoughts and notes

1. Typically, showing that a statement is true needs a proof (usually an argument); showing it is false needs a counterexample (usually a construction).
2. Remember that coNP is not the complement of NP. By definition, a problem X is in coNP if and only if \bar{X} is in NP. Why does this not imply coNP and NP are not complements?
3. For each complexity class (e.g. undecidable, unrecognizable, un-corecognizable, P, NP, NL, etc), you should know a canonical example of a complete problem for that class, for ease of reductions.
4. Remember the generic template for showing a problem X is not in a particular class (e.g. decidable). First, pick a canonical problem Y that is known to also be in that class. Take an arbitrary instance of the problem Y, and use that instance to construct an instance of the problem X with the guarantee that the X-instance is in X if and only if the Y-instance is in Y (i.e. you are using a hypothetical "black box" procedure for X to conclude that problem Y cannot be too much harder than X, which is a contradiction, proving such a black-box procedure cannot exist for X. That's the $\mathrm{tl} ; \mathrm{dr}$ version of a reduction.
5. Be careful about which results or statements apply to directed graphs, and which ones to undirected graphs (and which ones apply to both). The HAMPATH problem is NP-complete both for directed graphs and for undirected graphs. The PATH problem is NL-complete for directed graphs, but for undirected graphs it can be shown to be in L.
6. Be careful about which results or statements apply to positive integers, and which ones to all integers, and other similar assumptions. The SUBSET-SUM problem can be shown to work with all integers, not just for positive ones. We often state it for multisets, but it makes no difference if we defined it as a set instead. Be aware of these assumptions.
7. In particular, note that coNP \cap NP contains P. We do not know if it equals P , however. Note the difference with Recognizable \cap co-Recognizable $=$ Decidable.
8. To show a problem is complete for a complexity class X, you need to show TWO things: the problem is in X (an upper bound), and the problem is X-hard (a lower bound). This last condition means all problems in X are reducible (in the meaningful sense, depending on the context) to X.
9. Be careful about which class contains which other class. We know the chain $\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq$ PSPACE \subseteq EXPTIME \subseteq EXPSPACE \subseteq DECIDABLE \subseteq RECOGNIZABLE. By the Hierarchy Theorems, we know some of these containments are strict, but we also do not know about some. It is very important to remember some strict containments, noting that the Hierarchy Theorems only apply to classes of the same type (space or time). For instance, we know $L \subsetneq P S P A C E \subsetneq$ EXPSPACE, and P厅EXPTIME.
10. Remember that the theorem $\mathrm{NL}=$ coNL is extremely useful. It means in order to show membership in NL, it suffices to show membership in coNL (and vice versa).
11. Remember all log-space reductions are polynomial-time reductions as well, but we do not know if the converse is true.
12. For each complexity class, you should know a canonical example of a problem in that complexity class. For instance, you should know MAJORITY is in $N C^{1}$, and that COMPOSITES \in NP. Most importantly, you should understand why.
13. For many complexity classes, you should understand the notion of being complete for that class in terms of reductions. The same notion of reductions will not in general hold for all complexity classes: for instance, it makes no sense to use polynomial time reductions for NL-completeness.
14. You should know which standard operations a class is closed under (keeping in mind that we do not know the answer to many of these). Given any complexity class, is it closed under union? Concatenation? Intersection? Complementation? Kleene star? It is a good idea to see which of these is obvious. For instance, any deterministic complexity class is closed under complementation. This is not necessarily true of nondeterministic classes.
15. Keep in mind many polynomial-time algorithms you are familiar with can actually be implemented in smaller complexity classes. For instance, from algorithms courses, we are used to thinking about the undirected PATH problem as an $O(m+n)$ algorithm (BFS or DFS), so PATH is clearly in P. However, as we know from class, the undirected PATH problem is a canonical example of a problem in L as well.
16. Finally, one nice big-picture takeaway from this course is that there are three models of complexity that are all in some sense equivalent: Turing Machines, circuits, and logical descriptions. There are notions of complexity for each of them that turn out to be equivalent, and so they all divide, sort, and neatly categorize the world of problems into the so-called complexity $z o o$, where any problem can be slotted into its appropriate place. There is much we do not know about the zoo, and it is constantly expanding as new complexity classes are defined every week, but the zoo itself forms the underlying structure of all computational problems, and rigorously defines what it means to be an intractable problem, what constitutes an easy one, and what the limits are to what we can do.
