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DIRECTIONS:

• Answer the problems on the exam pages.

• There are six problems on pages 2-10, some with mul-
tiple parts, for 120 total points plus 10 extra credit.
The probable scale is around A=110, C=70, but will
be determined after we grade the exam.

• If you need extra space, use the back of a page.

• No books, notes, calculators, or collaboration.

• In case of a numerical answer, an arithmetic expression
like “217 − 4” need not be reduced to a single integer.

• If you don’t know the answer to any question, you can
just write ”Pass” or ”I don’t know”, and you will receive
20% of the points of that question. You can use it as
many times as you want. Note that it doesn’t apply to
wrong answers, and you may get less than 20% if you
attempt a question and your answer is not correct. (It
would be silly to ”Pass” on a true/false question, since
it’s far better for you guess, and to save us grading
effort we will not allow you to pass on those.)
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Question 1 (35): Dave’s dogs Blaze and Rhonda often see animals during their daily walks. They
walk through five locations, the Neighborhood, the Farm, the Woods, the Park, and the
Village.

The relation X is a subset of D×A×L, where D = {b, r} is the set of dogs Blaze and Rhonda,
A = {O,R, S} is the set of species they may have seen, Opossum, Rabbit, or Squirrel, and
L = {f, n, p, v, w} is the set of five locations. The predicate X(d, a, ℓ) means “dog g observed
an animal of species a in location ℓ”. (Sorry that “Rhonda” and “Rabbit” have the same
letter — we will use r for the dog and R for the species.)

• (a, 10) Translations: Translate these four statements as indicated (point values as
indicated):

Statement I: (to symbols, 3) An Opossum was seen in exactly one location, both dogs
saw it, and it was the only location in which Blaze saw both a Rabbit and a Squirrel.

∃y : X(b,O, y) ∧X(r,O, y) ∧ ∀z : (X(b, R, z) ∧X(b, S, z)) ↔ (z = y))

This was a difficult one. I gave two of the three points for ∃y : X(b,O, y) ∧
X(r,O, y) ∧ X(b, r, y) ∧ X(b, s, y), or anything that close. I did not make any
note on Gradescope for which mistake you made in that two-point range –
just check what you wrote against the solution. Statement II: (to English, 2)

∀y : X(r, S, y)

Rhonda saw a Squirrel in every location.

Pretty much everyone got this right. Statement III: (to symbols, 3) Wherever

Rhonda saw a Rabbit, Blaze also saw a Rabbit in the same location.

∀y : X(r,R, y) → X(b, R, y)

I took off one point for a single error like the wrong quantifier, or ∧ or ↔
instead of the →. More than one error, or a worse error, lost you two points.

Statement IV: (to English, 2) ¬(X(r, S, f) ↔ X(b, S, f))

At the farm, it was not the case that each dog saw a Squirrel if and only if the other did.

Some people correctly translated this to mean X(r, S, f)⊕X(b, S, f), and others
somehow got this turned around to say that the “if and only if” was true.
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• (b, 10) Boolean Proof:

Let q1 = X(b, R, n), q2 = X(b, R, p), q3 = X(b, R, v), and q4 = X(b, R,w). Determine
the truth values of q1, q2, q3, and q4, given the premises

(q2 ∨ q3) → ¬q1,
¬q4 → (q1 ∧ ¬q3), and
q4 → (q1 ∧ q2).

You may use either a truth table or deductive proof rules.

The truth table is omitted here.

Both q4 and ¬q4 imply q1, so q1 must be true. By contrapositive, q1 implies both ¬q2
and ¬q3. Since this makes the conclusion of the third premise false, q4 must be false.
With the setting where q1 is true and the other three are false, the first premise is true
vacuously, the second trivially, and the third vacuously.

Most people did well, with either method though using the rules was more
popular. I generally gave at most 4/10 if you got the wrong answer, or if
you didn’t state your answer. Some of the truth table people had trouble
integrating the three table for the three premises, which need to be put
together to talk about all four variables.

• (c, 15) Dog Proof: Using the four premises from part (a) and the three premises from
part (b), determine where the Opossum was seen, and prove your answer.

By Statement I, we may eliminate any location in which Blaze either fails to see a Rabbit
or fails to see a Squirrel. From part (b), Blaze did not see a Rabbit in p, v, or w. In
location f , Statement IV tells us that exactly one of the two dogs saw a Squirrel there.
By Specification on II, Rhonda did see a Squirrel there, so Blaze did not see one there.
The only location where Statement I can be fulfilled is n. Statement III takes no part in
the proof.

Most of these were good, though some people got in trouble from bad trans-
lations or from bad versions of Q1b. I gave around 9/15 if you had the right
answer with bad reasoning. In particular, I gave 10/15 for the claim that the
Neighborhood was the only place where Blaze saw a Rabbit, ignoring the
possibility of the farm. For wrong answers, I gave 7/15 if you either dealt
with the farm correctly or correctly ruled out the three places from Q1b. I
took off a point if you reversed Statement III, or three points if you used
this bad version in your argument.
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Question 2 (15+10): Recall that the Fibonacci function F (n) is defined by the rules F (0) = 0,
F (1) = 1, and for all n with n > 1, F (n) = F (n− 1) + F (n− 2).

• (a, 15) Show that for all naturals n, F (1)+F (3)+ . . .+F (2n+1) = F (2n+2), that is:

n∑
i=0

F (2i+ 1) = F (2n+ 2)

Base case: n = 0, the sum is F (1), and F (2 · 0 + 2) = F (2), and this is true because
F (1) = F (2) = 1.

IH:
∑n

i=0 F (2i+ 1) = F (2n+ 2)

IG:
∑n+1

i=0 F (2i+ 1) = F (2n+ 4)

Inductive step: The sum up to n+1 is the sum up to n plus one more term, F (2n+3).
By the IH, the sum up to n is F (2n+2). So the sum up to n+1 is F (2n+2)+F (2n+3),
which is F (2n+ 4) by the Fibonacci definition.

These went well in general, with the biggest errors coming in the base case,
of all things. Part of the definition of the Fibonacci sequence mentions n > 1,
and many of you thus ignored where you were asked to prove the statement
for all naturals, and left off n = 0 (two points off) or also n = 1 (three points
off). Many purported base cases didn’t address the question. The correct
base case for n = 0 requires that you consider that it says essentially that
F (0) = F (1).

• (b, 10XC) In Midterm #2, we learned that in the village of Gigili there is a single child
for each age in the set {1, 2, 4, 8, . . .}, that is, for all naturals of the form 2k. We were
asked to prove that any positive natural can be expressed as a sum of distinct numbers
in this set, using induction.

In the nearby village of Figili, they have an identical situation except the ages of the
children in the set are {1, 2, 3, 5, 8, . . .}, that is, all the Fibonacci numbers except F (0) =
0 and F (1) = 1. Prove that for all positive naturals n, by induction, that n can be
expressed as a sum of distinct numbers in this set, with the added condition that the
sum may not include two consecutive numbers. (For example, the sum could not include
both 3 and 5, or both 5 and 8.)

4



Strong Induction on all positive naturals:

Base Case: n = 1, true because we can make 1 by taking F (2) = 1 by itself.

SIH: Every positive number i with 1 ≤ n can be made by sums of distinct numbers in
the set, with no two numbers consecutive.

IG: n+ 1 can be made by such a sum.

Case 1: n+1 is a Fibonacci number F (k). Then we can make n+1 with F (k) by itself,
and the consecutive numbers rule is certainly satisfied.

Case 2: n+1 is not a Fibonacci number. Let F (k) be the largest Fibonacci number with
F (k) ≤ n. Let m = n+1−F (k). Note that m < F (k−1), sinceotherwiseifm≥ F (k−1),
we would have n+ 1 ≥ F (k + 1), contradicting the choice of F (k). By the IH, m is the
sum of distinct numbers in the set, with no two numbers consecutive, and F (k−1) cannot
be in this sum. If we include F (k) in this sum, the new total is n+ 1, and we have not
put two consecutive numbers into the set.

You don’t need to separate the case where n + 1 is a Fibonacci number, if
you also prove the statement for n = 0. You could also do this by ordinary
induction, with some effort, by showing that given a correct sum for n, you
can add 1 and then replace terms of the form F (i) + F (i+ 1) with F (i+ 2) as
long as you need to until there are no consecutive terms in the sum.
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Question 3 (25): The next three questions all concern finite-state machines. Unlike in most
previous other exams, each question is about a different language.

• (a, 10) Starting from the given λ-NFA, find the corresponding NFA using the Killing
λ-Moves algorithm. Draw the λ-NFA and NFA and show all the steps. Your NFA should
have three a-moves and five b-moves.

S = {ι, S1, S2, f}, start state ι, F = {f} , Σ = {a, b}, and transition relation
∆ = {< ι, λ, S1 >,< ι, a, S2 >,< S1, b, S2 >,< S1, a, f >,< S2, b, S1 >,< S2, λ, f >}.

No new λ-moves are needed, as the current moves are transitively closed already. There
is also no need to change the final state set, since there is no λ-path from ι to f .

< ι, a, S2 > creates itself and < ι, a, f >. < S1, a, f > creates itself and < ι, a, f >. <
S1, b, S2 > creates itself and three more moves: < ι, b, S2 >, < S1, b, f >, and < ι, b, f >.
< S2, b, S1 > creates only itself. We created nine moves, but there are only eight because
one was created twice. As claimed, we have three a-moves and five b-moves.

• (b, 10) Starting from the NFA you found in part (a), apply the Subset Construction
algorithm to find the corresponding DFA.

State {ι} is the start state of the DFA and is non-final. Both its arrows go to the final
state {S2, f}. On input a, {S2, f} goes to the non-final death state ∅ (and of course ∅
has both arrows to itself). On input b, {S2, f} goes to the non-final state {S1}. On input
a, {S1} goes to the final state {f}, which in turn has both arrows to ∅. On input b, {S1}
goes to {S2, f}, a state we have seen. We have finished the construction with five states.

• (c, 5) Determine whether the DFA that you found in part (b) is minimal. Justify your
answer.

It is minimal. The two final states are separated by bb. Of the three non-final states, only
{ι} is accepted after a, and only {S2, f} is accepted after bb. If we run the minimization
algorithm, the first phase separates the two final states and separates {ι} from the other
two non-final states. Then the next phase separates the other two states.
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Question 4 (10): Find a λ-NFA for the given regular expression [((a+b)∗ab)+(ba+a)∗]∗. Follow
the rules of construction from the lecture. (This means including all the λ-moves, even if the
λ-NFA could be simplified by removing them.)

I got eleven states: (1, λ, 2), (2, λ, 3), (2, λ, 7),(2, λ, 10), (3, λ, 4), (3, a, 4), (3, b, 4), (4, λ, 3,
(4, λ, 5), (5, a, 6), (6, b, 10), (7, λ, 9), (7, b, 8), (7, a, 9), (8, a, 9), (9, λ, 7), (9, λ, 10), (10, λ, 2),
(10, λ, 11). State 1 is the start state, and state 11 is the only final state.

Question 5 (15): Apply the State Elimination Algorithm to find a regular expression for the DFA
given in the diagram below.

pstart

q

r

s

a

b

a

b

a

b b

a

We first add a new state i with an edge < i, λ, p >, and a new final state f with edges
< r, λ, f > and < s, λ, f >.

Eliminating p gives us < i, a, q >, < i, b, r >, and < r, ab, r >.

Eliminating s gives us < r, b, f > (which is merged to make < r, λ+b, f >), < r, ba, q > (which
is mergeed to make < r, aa+ ba, q >), < q, ba, q > (which is merged to make < q, a+ ba, q >)
and < q, b, f >.

Eliminating q gives us < i, a(a+ ba)∗b, f > and < r, (aa+ ba)(a+ ba)∗b, f > (which merges
to make < r, λ+ b+ (aa+ ba)(a+ ba)∗b, f >).

Eliminating r gives us the final regular expression of

a(a+ ba)∗b+ b(ab)∗(λ+ b+ (aa+ ba)(a+ ba)∗b

.
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Question 6 (20): The following are ten true/false questions, with no explanation needed or
wanted, no partial credit for wrong answers, and no penalty for guessing. Some of them
refer to the scenarios of the other problems, and/or the entities defined on the supplemental
sheet.

• (a) The regular expressions (a+ b)∗ and a(a∗ + b∗) + b(a∗ + b∗) do not denote the same
language.

TRUE. The second one does not cover λ.

• (b) It is not the case that there are some languages for which we can design an NFA but
we cannot design a DFA.

TRUE. The Subset Construction lets us convert any NFA to an equivalent DFA.

• (c) Let G be a directed graph, let s be a node in G, and set every edge weight equal to
1. Then a Uniform Cost Search from s will act the same as applying BFS from s.

TRUE. The priority queue from the UCS acts just like the ordinary queue in the BFS.

• (d) In Question 1(c), the premises used there do not give you enough information to
determine all the truth values of the predicate X.

TRUE. Everything about the Opossum is known, but for example we don’t know whether
Blaze saw a Squirrel in those places where she did not see a Rabbit.

• (e) Consider a one-tape Turing machine M with tape alphabet {a, b,□}, transition
function δ, and states including p and q. If the current configuration of M is □abqa□b,
and δ(q, a) = {p,□, L}, then the next configuration of M is □apb□□a.

FALSE. The machine is supposed to overwrite the ”a”, move left, and enter state p. It
does so, but the ”b” on the right has changed to an ”a” for no good reason.

• (f) If L and L′ are both Turing-recognizable languages, then it could be that L ∩ L′ is
not also Turing recognizable.

FALSE. If we run recognizers for both L and L′ on our input string w, either in series
or in parallel, we wait until or unless both accept. In that case we accept w. If one
rejects, we can reject, but otherwise we run forever, which is ok because the input is not
in L ∩ L′.

• (g) If X and Y are finite sets of the same size, and f is a function from X to Y , then f
is one-to-one if and only if it is onto.

TRUE. Both happen if and only if f is a bijection.

• (h) If m and n are any two positive naturals, then there exists a natural t such that any
natural p with p ≥ t can be written as mx+ ny, where x and y are naturals.

FALSE. This would be true if m and n were relatively prime, but we don’t have that
assumption here.

• (i) Consider any Hasse diagram as an undirected graph. Then it may have a cycle.

TRUE. There are no directed cycles in its role as a directed graph, but the division
relation on 1, 2, 3, 6, for example, is a four-node cycle as an undirected graph.
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• (j) Let G be a weighted undirected graph, with positive edge weights, and let s and t
be nodes of G. Let x be the shortest path from s to t found using uniform-cost search.
Let y be the result of an A∗ search with s as start node and t as goal node, using a
consistent and admissible heuristic function. Then y cannot be strictly smaller than x,
no matter what the heuristic.

TRUE. Both the result of a UCS search and that of an A∗ search give the true shortest
from s to t, so they are always the same.
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