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COMPSCI 250
Introduction to Computation

Final Exam Spring 2023

D. A. M. Barrington and G. Parvini 24 May 2023

DIRECTIONS:

• Answer the problems on the exam pages.

• There are six problems on pages 2-10, some with mul-
tiple parts, for 120 total points plus 10 extra credit.
The probable scale is around A=110, C=70, but will
be determined after we grade the exam.

• If you need extra space, use the back of a page.

• No books, notes, calculators, or collaboration.

• In case of a numerical answer, an arithmetic expression
like “217 − 4” need not be reduced to a single integer.

• If you don’t know the answer to any question, you can
just write ”Pass” or ”I don’t know”, and you will receive
20% of the points of that question. You can use it as
many times as you want. Note that it doesn’t apply to
wrong answers, and you may get less than 20% if you
attempt a question and your answer is not correct. (It
would be silly to ”Pass” on a true/false question, since
it’s far better for you guess, and to save us grading
effort we will not allow you to pass on those.)
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Question 1 (35): Dave’s dogs Blaze and Rhonda often see animals during their daily walks. They
walk through five locations, the Neighborhood, the Farm, the Woods, the Park, and the
Village.

The relation X is a subset of D×A×L, where D = {b, r} is the set of dogs Blaze and Rhonda,
A = {O,R, S} is the set of species they may have seen, Opossum, Rabbit, or Squirrel, and
L = {f, n, p, v, w} is the set of five locations. The predicate X(d, a, ℓ) means “dog g observed
an animal of species a in location ℓ”. (Sorry that “Rhonda” and “Rabbit” have the same
letter — we will use r for the dog and R for the species.)

• (a, 10) Translations: Translate these four statements as indicated (point values as
indicated):

Statement I: (to symbols, 3) An Opossum was seen in exactly one location, both dogs
saw it, and it was the only location in which Blaze saw both a Rabbit and a Squirrel.

Statement II: (to English, 2) ∀y : X(r, s, y)

Statement III: (to symbols, 3) Wherever Rhonda saw a Rabbit, Blaze also saw a
Rabbit in the same location.

Statement IV: (to English, 2) ¬(X(r, S, f) ↔ X(b, S, f))
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• (b, 10) Boolean Proof:

Let q1 = X(b, R, n), q2 = X(b, R, p), q3 = X(b, R, v), and q4 = X(b, R,w). Determine
the truth values of q1, q2, q3, and q4, given the premises

(q2 ∨ q3) → ¬q1,
¬q4 → (q1 ∧ ¬q3), and
q4 → (q1 ∧ q2).

You may use either a truth table or deductive proof rules.

• (c, 15) Dog Proof: Using the four premises from part (a) and the three premises from
part (b), determine where the Opossum was seen, and prove your answer.
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Question 2 (15+10): Recall that the Fibonacci function F (n) is defined by the rules F (0) = 0,
F (1) = 1, and for all n with n > 1, F (n) = F (n− 1) + F (n− 2).

• (a, 15) Show that for all naturals n, F (1)+F (3)+ . . .+F (2n+1) = F (2n+2), that is:

n∑
i=0

F (2i+ 1) = F (2n+ 2)
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• (b, 10XC) In Midterm #2, we learned that in the village of Gigili there is a single child
for each age in the set {1, 2, 4, 8, . . .}, that is, for all naturals of the form 2k. We were
asked to prove that any positive natural can be expressed as a sum of distinct numbers
in this set, using induction.

In the nearby village of Figili, they have an identical situation except the ages of the
children in the set are {1, 2, 3, 5, 8, . . .}, that is, all the Fibonacci numbers except F (0) =
0 and F (1) = 1. Prove that for all positive naturals n, by induction, that n can be
expressed as a sum of distinct numbers in this set, with the added condition that the
sum may not include two consecutive numbers. (For example, the sum could not include
both 3 and 5, or both 5 and 8.)
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Question 3 (25): The next three questions all concern finite-state machines. Unlike in most
previous other exams, each question is about a different language.

• (a, 10) Starting from the given λ-NFA, find the corresponding NFA using the Killing
λ-Moves algorithm. Draw the λ-NFA and NFA and show all the steps. Your NFA should
have three a-moves and five b-moves.

S = {ι, S1, S2, f}, start state ι, F = {f} , Σ = {a, b}, and transition relation
∆ = {< ι, λ, S1 >,< ι, a, S2 >,< S1, b, S2 >,< S1, a, f >,< S2, b, S1 >,< S2, λ, f >}.

6



• (b, 10) Starting from the NFA you found in part (a), apply the Subset Construction
algorithm to find the corresponding DFA.

• (c, 5) Determine whether the DFA that you found in part (b) is minimal. Justify your
answer.
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Question 4 (10): Find a λ-NFA for the given regular expression [((a+b)∗ab)+(ba+a)∗]∗. Follow
the rules of construction from the lecture. (This means including all the λ-moves, even if the
λ-NFA could be simplifed by removing them.)
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Question 5 (15): Apply the State Elimination Algorithm to find a regular expression for the DFA
given in the diagram below.
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Question 6 (20): The following are ten true/false questions, with no explanation needed or
wanted, no partial credit for wrong answers, and no penalty for guessing. Some of them
refer to the scenarios of the other problems, and/or the entities defined on the supplemental
sheet.

• (a) The regular expresssions (a+ b)∗ and a(a∗ + b∗) + b(a∗ + b∗) do not denote the same
language.

• (b) It is not the case that there are some languages for which we can design an NFA but
we cannot design a DFA.

• (c) Let G be a directed graph, let s be a node in G, and set every edge weight equal to
1. Then a Uniform Cost Search from s will act the same as applying BFS from s.

• (d) In Question 1(c), the premises used there do not give you enough information to
determine all the truth values of the predicate X.

• (e) Consider a one-tape Turing machine M with tape alphabet {a, b,□}, transition
function δ, and states including p and q. If the current configuration of M is □abqa□b,
and δ(q, a) = {p,□, L}, then the next configuration of M is □apb□□a.

• (f) If L and L′ are both Turing-recognizable languages, then it could be that L ∩ L′ is
not also Turing recognizable.

• (g) If X and Y are finite sets of the same size, and f is a function from X to Y , then f
is one-to-one if and only if it is onto.

• (h) If m and n are any two positive naturals, then there exists a natural t such that any
natural p with p ≥ t can be written as mx+ ny, where x and y are naturals.

• (i) Consider any Hasse diagram as an undirected graph. Then it may have a cycle.

• (j) Let G be a weighted undirected graph, with positive edge weights, and let s and t
be nodes of G. Let x be the shortest path from s to t found using uniform-cost search.
Let y be the result of an A∗ search with s as start node and t as goal node, using a
consistent and admissible heuristic function. Then y cannot be strictly smaller than x,
no matter what the heuristic.
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Supplemental Sheet for COMPSCI 250 Final Exam, 24 May 2023

Question 1: Dave’s dogs Blaze and Rhonda often see animals during their daily walks. They walk
through five locations, the Neighborhood, the Farm, the Woods, the Park, and the Village.

The relation X is a subset of D × A × L, where D = {b, r} is the set of dogs Blaze and Rhonda,
A = {O,R, S} is the set of species they may have seen, Opossum, Rabbit, or Squirrel, and L =
{f, n, p, v, w} is the set of five locations. The predicate X(d, a, ℓ) means “dog g observed an animal
of species a in location ℓ”. (Sorry that “Rhonda” and “Rabbit” have the same letter — we will use
r for the dog and R for the species.)

The four statements for translations and the dog proof are:

• Statement I: An Opossum was seen in exactly one location, both dogs saw it, and it was
the only location in which Blaze saw both a Rabbit and a Squirrel.

• Statement II: ∀y : X(r, s, y)

• Statement III: Wherever Rhonda saw a Rabbit, Blaze also saw a Rabbit in the same
location.

• Statement IV: ¬(X(r, S, f) ↔ X(b, S, f))

The variables for the Boolean proof are:

Let q1 = X(b, R, n), q2 = X(b, R, p), q3 = X(b, R, v), and q4 = X(b, R,w).

The premises for the Boolean proof are:

(q2 ∨ q3) → ¬q1,
¬q4 → (q1 ∧ ¬q3), and
q4 → (q1 ∧ q2).

Question 3: The λ-NFA used there is: S = {ι, S1, S2, f}, start state ι, F = {f} , Σ = {a, b}, and
transition relation
∆ = {< ι, λ, S1 >,< ι, a, S2 >,< S1, b, S2 >,< S1, a, f >,< S2, b, S1 >,< S2, λ, f >}.
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