NAME:

COMPSCI 250
Introduction to Computation
Second Midterm Spring 2022

D. A. M. Barrington and K.Doney 7 April 2022

DIRECTIONS:

e Answer the problems on the exam pages.

e There are five problems on pages 2-8, some with mul-
tiple parts, for 100 total points plus 10 extra credit.
Probable scale is somewhere around A=95, C=65, but
will be determined after we grade the exam.

e Pages 9 and 10 (printed back to back) contains useful
definitions and is given to you separately — do not put
answers on it!

e If you need extra space use the back of a page.
e No books, notes, calculators, or collaboration.

e In case of a numerical answer, an arithmetic expression
like “2'7 — 4” need not be reduced to a single integer.



Question 1 (10): Recall that the Fibonacci function F'(n) is defined by the rules F(0) = 0,
F(1) =1, and for all n with n > 1, F(n) = F(n — 1) + F(n — 2). In this problem you are
going to solve a similar, but different recurrence. Here we have two base cases h(0) = 1 and
h(1) = 2, and the general rule for positive naturals n is h(n + 1) = h(n) 4+ 2h(n — 1). Prove,
by strong induction on all naturals n, that h(n) = 2". You will need two base cases.

Let P(n) be the statement h(n) = 2™. The first base case of n = 0 is true because we are given
h(0) = 1 and 2° = 1. The second base case of n = 1 is true because we are given h(1) = 2
and 2' = 2. For the general case, assume that h(i) = 2¢ for all i withi < n. The rule tells us
that h(n + 1) = h(n) + 2h(n — 1). Substituting in the SIH, we get h(n + 1) = 2" + 2(2"~1),
and by arithmetic this is 2", This completes the strong induction.

Question 2 (20+10): Let ¥ = {a,b}, so that we are considering strings of a’s and b’s. A string
is defined to have a triple letter if it contains either aaa or bbb as a substring, that is if it
ever has the same letter three times in a row. For any natural, let g(n) be the number of
strings of length n that do not have a triple letter.

e (a, 10) Determine the values of g(0), g(1), g(2), g(3), and g(4) by listing all the elements

with no triple letter, of length at most 4. (You might want to compute g(5) but it is not
required. Show that ¢(3) = ¢(2) +¢(1) and g(4) = ¢g(3) + ¢(2). (You might also want to
verify ¢g(5) = g(4) 4+ ¢g(3) but this is not required.)
9(0) = 1 because of the empty string. Since no triple letters can occur with fewer three
letters, we have g(1) = 2 and g(2) = 4. ¢g(3) = 6 because the only strings of length
3 with triple letters are aaa and bbb. g(4) = 10 because six of the 16 possible strings
have a triple letter: aaaa, aaab, abbb, baaa, bbba, and bbbb. The strings of five letters
beginning with a are aabaa, aabab, aabba, abaab, ababa, ababb, abbaa, and abbab. There
are eight of these, and eight more by swapping a’s and b’s, giving g(5) = 16. We note
that g(3) = g(2) +9(1), g(4) = 9(3) + 9(2), and g(5) = g(4) + g(3).

e (b, 10) Assume that g(n + 1) = g(n) + g(n — 1) for all n with n > 1. Prove, by strong

induction on all positive naturals n, that g(n) = 2F(n + 1), where F is the ordinary
Fibonacci sequence defined in Question 1. You will need two base cases, which you can
get from part (a).
We have shown g(1) = 2 and g(2) = 4. and we note that 2F (1+1) = 2 and 2F(2+1) = 4.
We proceed by strong induction for all positive naturals, with base cases for n = 1 and
n = 2, to prove that g(n) = 2F(n + 1). Let n with n > 1 and assume as SIH that
g(1) = 2F(i+1) for alli such that 1 < i < n. We need to prove that g(n+1) = 2F(n+2.
Our assumption is that g(n+1) = g(n)+g(n—1), which by the SIH is 2F (n+1)+2F(n),
which is 2F (n 4 2) by the definition of the Fibonacci function.

e (c. 10) Prove, for all naturals n with n > 1, that g(n + 1) = g(n) + g(n — 1). (Hint:
This problem does not necessarily require induction. If you have an arbitrary string of
length n+ 1 with no triple letter, look at the case where the last two letters are different
and the case where the last two letters are the same.)

Let n+ 1 be arbitrary with n > 1 and consider a string w of length n 4+ 1 with no triple
letter. If w’s last two letters are different, let w be written as ua or ub. As we consider
all strings w with no triple letter, and last two letters different, these strings have a
bijection with strings u with length n and no triple letter. So there are exactly g(n)
strings of length n 4+ 1 with no triple letter and the last two letters differently. Now we
consider w’s whose last two letters are the same. We can write these strings as vaa or
vbb, forming a bijection between these w’s and all strings of length n — 1 with no triple



letter. There are thus exactly g(n — 1) of these strings, so that there are g(n)+ g(n —1)
total strings with length n + 1 and no triple letter.

Question 3 (20): Pictured here is a directed graph D with six nodes — note that there are edges
both from TF to T and from T to TF. Also pictured is the undirected graph U with the

same nodes, with undirected edges in place of each directed edge in D.

The two questions follow on the next page.

e (a, 10) Carry out a DFS search for the directed graph D starting with node C'F. When
two or more nodes need to come off the stack and they entered at the same time, take the
one first that comes earlier alphabetically. Draw the DFS tree, indicating the non-tree
edges, and classify each as a back, cross, or forward edge.

1. CF goes on the stack.

2. CF comes off, PA goes on.

3. PA comes off, SA and TF go on.

4. SA comes off, SA-CF becomes a back edge.



5. TF comes off, TF-CF becomes a back edge, PP and T go on.
6. PP comes off, PP-PA becomes a back edge, PP-SA becomes a cross edge.
7. T comes off. T-TF becomes a back edge.

The tree has CF as root, only child PA at level 1, SA and TF are children of PA at level
2, PP and T are children of TF at level 3.

e (b, 10) Carry out a BFS search for the undirected graph U, starting with node C'F.
If two or more nodes need to come off the queue and they entered at the same time,
take the one first that comes earlier alphabetically. Draw the BFS tree, indicating the
non-tree edges.

CF goes on the queue.

CF comes off, PA, SA, and TF go on.

PA comes off, PP, SA, and TF go on.

SA comes off, SA-PA becomes a non-tree edge, PP goes on.

TF comes off, TF-PA becomes a non-tree edge, PP goes on , T goes on.
PP comes off, PP-SA and PP-TF become non-tree edges.

T comes off, the search terminates

NS G o~

The BFS tree has CF as the root, PA, SA, and TF on level 1 with tree edges from CF, PP at
level 2 with a tree edge from PA, and T at level 2 with a tree edge from TF.

Question 4 (30): Let G be the weighted undirected graph pictured here:

The six nodes in the graph represent locations in Rome, and you are currently at 7' (the train
station) and you want to navigate from there to SA (the Castel Sant’Angelo near your hotel).
The edges of the graph indicate walking time in minutes to go from one location to another
— for example, it takes 25 minutes to walk from 7" to TF.

But there is a complication. Your companion insists that whenever we reach one of these
locations, you have to stop to visit for the required time in the following table. (So, for
example, traveling from T to TF will take you 40 minutes total, 25 for the walk and 15 to
visit T'F.)



CF (Campo de Fiori): 25 minutes

PA (Pantheon): 35 minutes

PP (Piazza del Popolo): 10 minutes

SA (Castel Sant’Angelo, your hotel): 10 minutes
T (Termini, the train station): 0 minutes

TF (Trevi Fountain): 15 minutes

Your goal is to reach the hotel with the minimum total time, and we’ll eventually do this with
an A* search using the walking time as a heuristic. We want h(z) for each node to be the
walking time from the goal, SA, to z.

The two questions follow on the next page.

NS G e v~

(a, 15) Trace a uniform-cost search with start node SA and no goal node, using the
walking times given on the graph, to find the value of h(z) for every node z. Indicate
which nodes are on the priority queue at each stage of the search.

1. (SA, 0) goes on the PQ

2. (SA, 0) comes off, (PA, 10), (PP, 15), and (CF, 25) go on.
(PA, 10) comes off, (CF, 20), (TF, 25), and (PP, 30) go on.
(PP, 15) comes off, (TF, 35) goes on.
(CF, 20) comes off, (TF, 30) goes on.
(CF, 25) is discarded.
(TF, 25) comes off, (T, 50) goes on.
(PP, 30), (TF, 30), and (TF, 35) are all discarded.
. (T, 50) comes off and the search ends.

We have h(SA) = 0, h(PA) = 10, h(PP) = 15, h(CF) = 20, h(TF) = 25, and
h(T) = 50.
(b, 15) Conduct a complete A* search of G with start node T' and goal node SA, using
the total time for each edge traversed. We determine the added time for each new edge
by adding the walking time for that edge and the visit time for the destination. We use

the values of heuristic function h from part (a). Indicate which nodes are on the priority
queue at each stage of the search.

© 0 R > G e

T(0/50) goes on the PQ).

T(0/50) comes off, TF(25+15/25) goes on.

TF(40/25) comes off, CF(50+25/20), PA(55+35/10), and PP(60+10/15) go on.
PP(70/15) comes off, PA(90+35/10) and SA(95/0) go on.

There is now a tie in the PQ at 95, if we take CF first, then:

CF(75/20) goes on, SA(100+10/0) goes on.

SA(95/0) comes off, and we find the optimal path T-TF-PP-SA

We have total walking time 25+20+15 = 60 and visit time 15+10+10=35.

Question 5 (20): The following are ten true/false questions, with no explanation needed or
wanted, no partial credit for wrong answers, and no penalty for guessing. Some of them
refer to the scenarios of the other problems, and/or the entities defined on the supplemental
sheet.



(a) Let ¢(z) be a predicate on the naturals. If ¢(0) and ¢(1) are true and we have
Vo : ¢(x) = (6(2x) V (22 + 1)) being true, then Va : ¢(z) is true.

FALSE. This is similar to a valid induction, but note the V in the conclusion of the
implication — if this were A, it would work.

(b) Let ¢(z) be a predicate on the naturals. If ¢(0), ¢(1) and ¢(2) are true and we have
Vr:¢(x) = (p(x — 1) = ¢(x + 2)) being true, then Vz : ¢(z) is true.

TRUE. We can prove this by strong induction. If we know ¢(x — 1 and ¢(z), the nested
implication proves ¢(x + 1), and we have enough base cases.

(c) Let G be an arbitrary weighted graph with all non-negative weights. Let p; be the
optimal path weight from node i to the goal node g. Let e; be the minimum number
of steps to G from node i to the goal g. The heuristic h(i) = p; — e; may fail to be an
admissible heuristic for the A* algorithm.

TRUE. For one thing, p; might be less than 1, so that p; — e; might be negative.
(d) In the undirected graph U for Question 3, there are exactly two articulation points.
FALSE. There is only one.

(e) If m and n are positive integers, then it is not possible to tile every 4m by 4n rectangle
with T shaped tetrominoes.

b

FALSE. We can do it by using four of each of them to make 4 X 4 squares.

(f) If G is a game with a finite game tree, and every leaf is labeled with —1, 0, or 1, then
the value of the game must be —1, 0, or 1.

TRUE. By induction on all the nodes in the tree, each node must have one of those three
values, because each node must be the max or the min of previous values, which each
must come from that set.

(g) Given the arithmetic expression “+ + * 3 + + 57 * 12 6 2 * 7 + 14 1” in pre-
fix notation, the corresponding infix and postfix notation for the same expression are
“Bk((B + 7) + 12 x 6) + 2+ (7 x (14 + 1))” and

“35 7+ 126 x+ %2+ 7 14 1 + x +” respectively.

TRUE. Both claims follow from the recursive translation algorithms.

(h) To prove a set with two operations form a semiring, it is sufficient to show that both
the operators +, - are commutative and associative.

FALSE. We also need identity elements for both operations, and the distributive law.
(i) An arbitrary strongly connected directed graph G, with at least two nodes, must
have at least one directed cycle.

TRUE. If x and y are two distinct nodes in G, strong connectivity tells us that there is
a path from x to y and a path from y to x. Combining the two gives us a path from x to
x, and it has at least two edges in it so it is a directed cycle.

(j) An undirected graph G is bipartite if and only if there exist no cycles in G.

FALSE. It is true that if there are no cycles, it is bipartite, but it could be bipartite with
cycles if they are all even.



