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2WDFA’s and Turing Machines

• Enhancing a DFA’s Abilities
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• Why 2WDFA’s Have Regular Languages 
(Sketch)

• Turing Machines

• The Formal Turing Machine Model

• A Turing Machine Example

• The Church-Turing Thesis



Enhancing a DFA’s Abilities

• DFA’s, and the other models we have now 
shown to be equivalent to them, model a 
particular kind of computation.   A DFA:

• (1) can read its input only once, from left to 
right, 

• (2) can only read, not write to, the memory 
holding the input, and 

• (3) have only a bounded amount of memory 
apart from that input.



Enhancing a DFA’s Abilities

• In our last week we will look at another model 
of computation called a Turing machine, 
which we can think of as an enhanced DFA.  
Turing machines: 

• (1) can move both ways on the tape that 
contains their input, 

• (2) can write new characters into the space 
that originally holds the input, and 

• (3) can utilize additional memory, as much 
as they need, as well as the original space.



Enhancing a DFA’s Abilities

• We’ll begin today by looking at the effect of 
adding new ability (1) alone to a DFA, 
producing a new kind of machine called a 
two-way DFA.  

• In CMPSCI 501 you’ll also look at machines 
that have new abilities (1) and (2) but not (3) 
-- these are called linear bounded 
automata.



Two-Way Finite Automata

• Like a DFA, a 2WDFA has a state set Q, start 
state i, final state set F, input alphabet Σ, and 
transition function δ.  

• The only difference is that δ goes from Q × Σ 
to Q × {L, R}.  Based on the current state and 
the letter it sees, the 2WDFA enters a new 
state and moves either left or right on its tape.  

• It continues taking steps until or unless it 
moves off one end of the tape.



Semantics of 2WDFA’s

• We need to define the semantics of the 
2WDFA M --  the meaning of each computation 
in terms of defining a language L(M).  

• We start with the read head on the first 
letter of the input, and start the computation.  If 
the machine moves off the left end of the tape, 
we say that it hangs and the input is not in 
L(M). 



Semantics of 2WDFA’s

• If it moves off the right end of the tape, we 
say that it accepts if it goes into a final state 
and that it rejects if it goes into a nonfinal 
state.  

• There is a fourth possibility, that it loops or 
never terminates.  

• The input is in L(M) if and only if M accepts.



A 2WDFA Example

• Let’s look at the behavior of 
this 2WDFA on some strings:

• On a, it moves right off the 
input in state f and accepts.

• On b, it moves off the left end 
and hangs.

• On aaa, it moves right to 
state f, right again to state p, 
left to state f, right to p,..., and 
thus loops forever.

fi

b,L

b,R

a,R

b,R

a,Ra,L

p



Clicker Question #1

• What does this 2WDFA do 
on input string aabbab?

• (a) accepts by leaving to the 
right in a final state

• (b) rejects by leaving to the 
right in a nonfinal state

• (c) hangs by leaving to the left

• (d) enters an infinite loop

fi

b,L

b,R

a,R

b,R

a,Ra,L

p



Answer #1

• What does this 2WDFA do 
on input string aabbab?

• (a) accepts by leaving to the 
right in a final state

• (b) rejects by leaving to the 
right in a nonfinal state

• (c) hangs by leaving to the left

• (d) enters an infinite loop

fi

b,L

b,R

a,R

b,R

a,Ra,L

p



2WDFA’s and Regular Languages

• Could a 2WDFA have a non-regular language 
like {anbn: n ≥ 0}?  For DFA’s, we argued that 
after the a’s have been read, the machine 
“must know” how many a’s it saw (formally, 
each different number of a’s was in a different 
equivalence class).  

• But now, the machine could make multiple 
visits to the a’s.  Is there any way for it to use 
this capability to get more information about 
the a’s?



2WDFA’s and Regular Languages

• In Section 15.1 of the text, we prove that the 
language of any 2WDFA is regular.  Here is a 
sketch of the argument.  

• Given a 2WDFA M and a string w, we define 
several functions of w based on M’s behavior.  

• If M exits w to the right in state q when started 
in state i on the left, we say that f0(w) = q.  

• If it hangs or loops in that situation, we say that 
f0(w) = d.  



2WDFA’s and Regular Languages

• Similarly, we define a function fp for each state 
p.  Consider starting M on the right of w in 
state p.  

• If it loops or hangs, we define fp(w) = d.  

• If it exits to the right in state q, we define 
fp(w) = q.



Converting the 2WDFA Example

fi

b,L

b,R

a,R

b,R

a,Ra,L

p

a

diii

ddii

dfdppfdp

ffdp

iddd

fffp
idii

dfdp

dffp

iiii

a
a

a

a

a
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a a
a

a
b

b

b
b

b b
b

b

b
b

b

Language of DFA = a(ba+aba)*



2WDFA’s = Regular

• Here’s the crux of the argument.  Suppose that 
for two strings v and w, the values of each of 
these functions are the same.  That is, f0(v) = f0(w) 
and for each state p, fp(v) = fp(w). 

• Then, we will argue, v and w are L(M)-equivalent 
in the sense of the Myhill-Nerode Theorem.  

• Since there are only finitely many possible 
sequences of values for these functions, there are 
only finitely many equivalence classes, and the 
theorem tells us that L(M) is a regular language.



2WDFA’s = Regular

• We need to show that for any string z, the 
strings vz and wz are either both in L(M) or 
both not in L(M).  

• Let z be an arbitrary string, assume that the 
functions agree on v and w, and look at what 
happens when M starts computing on v and 
on w.  

• If M hangs or loops on vz without leaving v, it 
must do the same on wz because f0(v) = f0(w) 
= d. 



2WDFA’s = Regular

• If it exits v to the right, then it also exits w to the 
right, and in the same state.  From that point, the 
two computations in z proceed identically, until or 
unless they leave z.  

• If they leave to the right, both computations accept 
or both reject.  If they go back into v and w, they do 
so in the same state p.  Then either both die, or both 
move back into z in the same state fp(v) = fp(w), and 
so forth until eventually both accept, both reject, or 
both die.  So vz ∈ L(M) ↔ wz ∈ L(M).



Turing Machines

• In the 1930’s, various researchers designed 
systems of computation in an attempt 
to create a simple mathematically precise 
model that could express any possible 
computation.  The model that has become 
most widely used is the Turing machine, 
proposed by the English mathematician Alan 
Turing in 1936.  (Another one of these 
models, the lambda calculus of Alonzo 
Church, developed into the Lisp family of 
programming languages.)



Turing Machines

• Turing and Church each convinced 
themselves that any clear, precise 
computational instructions could be 
translated (we might say “compiled”) into 
each of their systems.  

• When each heard about the other’s system, 
they proved that any computation in one 
could be translated to the other. 



Turing Machines

• Thus the two systems defined the same set 
of computable functions from strings to 
strings.  

• Just as a language is either regular or not, a 
function is either computable or not.  

• (Actually finite-state machines would not be 
formalized for another twenty years or so.)



The Turing Machine Model

• A Turing machine is formally defined by 
giving a state set Q, an input alphabet Σ, a 
start state i, and a final state set F, as we’ve 
seen already.  

• But it also has a tape alphabet Γ with Σ ⊆ 
Γ, and a blank symbol ☐ that is an 
element of Γ and is the initial contents of 
every tape cell right of the input.



The Turing Machine Model

• The machine has a tape that is infinite to the 
right and finite to the left.  Each cell of the 
tape holds a letter in Γ at any given time. 

• There is a head that points to one cell of 
the tape at any given time.

bbb aaa

head



The Turing Machine Model

• The transition function δ is from Q × Γ 
to Q × Γ × {L, R}.  A step of the 
computation consists of the machine looking 
at the letter at its head, applying δ to its 
current state and that letter to get a triple 
(q, a, L) or (q, a, R), then changing its state to 
q, writing an a in the current cell, and moving 
left or right.

• Actually δ is not defined for states in F -- the 
machine halts in those states.



Turing Machine Configurations
• At any given time, we can describe everything we 

would ever want to know about the Turing 
machine’s computation by a string called a 
configuration.

• What we need to record is the current state, the 
contents of the tape, and the position of the head.

bbb aaa

head (state q)

Configuration:  ☐aaqb☐bab☐



Turing Machine Configurations
• We record the tape contents as a string of letters 

from Γ, starting at the left end of the tape and 
ending with the last non-blank letter. 

• We record the state and head position by inserting 
a letter for the state into this string, just to the left 
of the head position.

bbb aaa

head (state q)

Configuration:  ☐aaqb☐bab☐



Clicker Question #2

• Suppose δ(q, b) = (r, b, R).  What will be the new 
configuration of the Turing machine below?

• (a) ☐aabr☐bab☐           (b) ☐arbb☐bab☐

• (c) ☐aarb☐bab☐           (d) ☐aabrbbab☐

bbb aaa

head (state q)

Configuration:  ☐aaqb☐bab☐



Answer #2

• Suppose δ(q, b) = (r, b, R).  What will be the new 
configuration of the Turing machine below?

• (a) ☐aabr☐bab☐           (b) ☐arbb☐bab☐

• (c) ☐aarb☐bab☐           (d) ☐aabrbbab☐

bbb aaa

head (state q)

Configuration:  ☐aaqb☐bab☐



Turing Machine Configurations

• A Turing machine starts with only finitely 
many non-blank symbols on its tape.

• So in writing a configuration, we only need to 
go the the last non-blank symbol (unless we 
need to go further to indicate the head 
position).  

• We can think of the computation then as a 
series of configurations, starting with 
i☐w1w2...wn and continuing until or unless 
the machine halts or hangs.



A Turing Machine Example
• On the next slide is a machine that solves a 

problem that a DFA cannot.  When started in 
configuration i☐w1w2...wn, it will halt if and only 
if w is in the language {anbn: n ≥ 0} -- otherwise 
it will hang.

• With input aabb we get i☐aabb, ☐paabb, 
☐☐qabb, ☐☐aqbb, ☐☐abqb, ☐☐abbq☐, 
☐☐abrb, ☐☐asb, ☐☐sab, ☐s☐ab, ☐☐pab, 
☐☐☐qb, ☐☐☐bq☐, ☐☐☐rb, ☐☐s☐, 
☐☐☐p☐, ☐☐☐h☐.  The string aabb is 
accepted.



A Turing Machine Example
In i: Move R and go to p.
In p: On ☐, go to h.  
      On b, move L and go to z. 
      On a, print ☐, move R, and go to q.
In q: On a or b, move R and stay in q.  
      On ☐, move L and go to r.
In r: On a or ☐, move L and go to z.
      On b, print ☐, move L, and go to s.
In s: On a or b, move L and stay in s. 
      On ☐, move R and go to p.
In h: Halt (final state).
In z: Move left and stay in z.



Clicker Question #3
• What does this TM do on inputs a (starting 

i☐a☐) and ab (starting i☐ab☐)?

• (a) accepts both         (b) accepts a, hangs on ab

• (c) hangs on both       (d) hangs on a, accepts ab

In i: Move R and go to p.
In p: On ☐, go to h.  
      On b, move L and go to z. 
      On a, print ☐, move R, and go to q.
In q: On a or b, move R and stay in q.  
      On ☐, move L and go to r.
In r: On a or ☐, move L and go to z.
      On b, print ☐, move L, and go to s.
In s: On a or b, move L and stay in s. 
      On ☐, move R and go to p.
In h: Halt (final state).
In z: Move left and stay in z.



Answer #3
• What does this TM do on inputs a (starting 

i☐a☐) and ab (starting i☐ab☐)?

• (a) accepts both         (b) accepts a, hangs on ab

• (c) hangs on both       (d) hangs on a, accepts ab

In i: Move R and go to p.
In p: On ☐, go to h.  
      On b, move L and go to z. 
      On a, print ☐, move R, and go to q.
In q: On a or b, move R and stay in q.  
      On ☐, move L and go to r.
In r: On a or ☐, move L and go to z.
      On b, print ☐, move L, and go to s.
In s: On a or b, move L and stay in s. 
      On ☐, move R and go to p.
In h: Halt (final state).
In z: Move left and stay in z.

i☐a☐
☐pa☐
☐☐q☐
☐r☐
z☐
hang

i☐ab☐
☐pab☐
☐☐qb☐
☐☐bq☐
☐☐rb☐
☐s☐
☐☐p☐
halt



The Church-Turing Thesis

• The Church-Turing Thesis says that any 
“reasonable” general-purpose model of 
computation will be able to compute exactly 
the same functions from strings to strings as 
Turing machines or the lambda calculus. 

• (More precisely, they compute the same set 
of partial functions, because a general 
computation always has the possibility of not 
returning an output.)



The Church-Turing Thesis

• We can’t mathematically prove this thesis, only 
amass evidence for it.  In fact it actually serves as 
an implicit definition of “reasonable”.  

• Serious people have argued against the thesis -- 
for example physicist Roger Penrose argues that 
quantum effects in the brain compute in ways 
that a Turing machine could not.  (He’s wrong.)  

• For more on this see Turing’s article On Minds 
and Machines or almost anything by Douglas 
Hofstadter.



The Church-Turing Thesis

• You probably believe that we could simulate a 
Turing machine in Java, given unlimited 
memory.  Could a Turing machine simulate 
any Java program?  

• We know that Java can be compiled into 
machine language, so we would have to 
believe that any machine language program 
could be simulated by a TM.


