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Uniform-Cost and A* Search

• The All-Pairs and Single-Source Shortest Path 
Problems

• Priority Queues

• The Uniform-Cost Search Algorithm

• Proving Uniform-Cost Search Correct

• Using a Heuristic to Improve Search

• The A* Search Algorithm

• Examples of A* Heuristics



Short Paths in Labelled Graphs

• Today we look at the problem of finding 
shortest paths in a labelled graph.

• Let G be a graph (directed or undirected) 
where every edge is labelled with a non-
negative cost.  

• The simplest example is where nodes 
represent places and edge labels represent 
distances.  Every path in the graph has its 
total cost, which is the sum of the labels of 
the edges on it.



Cost Matrices for Graphs

• We could write down all the edge costs in a 
single-step distance matrix, where the 
entry in row u and column v is 0 if u = v, the 
edge cost if (u, v) is an edge, and infinity (∞) 
otherwise.  

• The all pairs shortest path problem is 
to take this matrix and produce the best-
path distance matrix, where the (u, v) 
entry is the length of the shortest path from 
u to v, or ∞ if there is no path.



Matrix Multiplication

• The problem of getting from the single-step 
matrix to the best path matrix can be solved 
with the right sort of matrix multiplications, 
as you may see in CMPSCI 311.  

• But a matrix multiplication takes O(n3) steps, 
which is prohibitively bad if n is, say, 106.  With 
a very large graph, simply storing one of 
those matrices may be problematic as well.



Single-Source Shortest Paths

• A GPS navigation program, for example, is 
usually asked to find the best path from u to 
v, in terms of some cost function for edges. 

• It turns out that the simplest algorithm to 
solve this problem also gives the best path 
from u to all other vertices (or at least all 
those that are closer to u than v is).  We call 
this the single-source shortest path 
problem.



Single-Source Shortest Paths

• Our algorithm will be a variant of the generic 
search algorithm for directed graphs.  

• Since we will be able to recognize previously 
seen nodes, it will process each vertex once 
and each edge once.  Thus, its running time 
will be O(e), where e is the number of edges. 



Single-Source Shortest Paths

• Most graphs on which you would run this 
algorithm are sparse, meaning that they have 
many fewer than the O(n2) edges of a 
complete graph.  (Most nodes have only a few 
neighbors.)  

• An O(e) running time is thus much better 
than anything that deals with all O(n2) entries 
of a matrix.  

• Our algorithm will also use only O(n) space, 
as opposed to O(n2) for a matrix.



Priority Queues

• For DFS we kept the open list as a stack, and 
for BFS we kept it as a queue.  The simple 
idea for our new algorithm is to keep it as a 
priority queue.

• In a priority queue, each item stored has a 
priority, and the basic operations are to 
insert a new item and to remove the item 
with minimum priority.  (We choose to 
refer to the item we want most as 
“minimum” priority.)



Clicker Question #1

• Suppose I have a priority queue of characters, where 
characters have lower priority if they come earlier 
in alphabetical order.  We can have multiple copies of 
the same letter in the queue.  If I do the operations 
insert(‘a’), insert(‘c’), 
removeMin( ), insert(‘b’), 
insert(‘a’), insert(‘d’), 
removeMin( ), removeMin( ), what 
character is returned by the last operation?

• (a) ‘a‘  (b) ‘b’ (c) ‘c’ (d) ‘d’ 



Answer #1

• Suppose I have a priority queue of characters, where 
characters have lower priority if they come earlier 
in alphabetical order.  We can have multiple copies of 
the same letter in the queue.  If I do the operations 
insert(‘a’), insert(‘c’), 
removeMin( ), insert(‘b’), 
insert(‘a’), insert(‘d’), 
removeMin( ), removeMin( ), what 
character is returned by the last operation?

• (a) ‘a‘  (b) ‘b’ (c) ‘c’ (d) ‘d’ 



Priority Queues

• In  CMPSCI 187 we saw how to implement a 
priority queue with a heap, so that with n 
elements in the queue we could carry out 
either insertions or removals in O(log n) 
time, maintaining the properties of the queue.

• In Java the priority can be given by the 
compareTo method of the item’s class, or 
by a separate Comparator object.  In our 
algorithm the priority of a node will be its 
best-path distance from the source node.



Uniform-Cost Search

• Our uniform-cost search algorithm is 
simply the generic search, where the open list 
is kept as a priority queue that returns the 
node that is closest to the start node.

• We begin with the start node s in the queue.  
We take s out, look at all the nodes that have 
edges from the start node, and insert the 
endpoints of those edges into the queue, 
marked with the length of those edges.



Uniform-Cost Search
• In general when we take a node x off the queue, 

with its distance from the start, then (if it is not 
the goal) we look at its neighbors, compute the 
distance from s through x to each one, and insert 
those nodes into the queue with those distances.  

• There may be multiple entries in the queue for 
the same node -- if so we only look at the one 
closest to s.

• When the goal node g comes off the queue, we 
declare victory and report the distance from s to 
g, which is just the priority of g in the queue.



Clicker Question #2
• Suppose we carry out a UCS of 

this weighted directed graph, 
starting at s with goal node g.  
After we process s and one more 
node, what nodes will be in the 
priority queue?

• (a) c-2, b-3, a-4

• (b) b-3, a-4, g-14

• (c) b-3, a-4, g-6, c-7

• (d) nothing as we declare victory
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Answer #2
• Suppose we carry out a UCS of 

this weighted directed graph, 
starting at s with goal node g.  
After we process s and one more 
node, what nodes will be in the 
priority queue?

• (a) c-2, b-3, a-4

• (b) b-3, a-4, g-14

• (c) b-3, a-4, g-6, c-7

• (d) nothing as we declare victory
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Proving Uniform-Cost Correct

• From our results for general search, we know that 
we will terminate and report victory if and only if a 
path to the goal node exists.  The only question is 
whether the distance we find is really the minimum 
distance possible.

• Here is the important invariant.  When any node x 
comes off the queue, its priority is the length of the 
shortest path from s to x.  We prove this by strong 
induction on the number of nodes that have come 
off the queue -- P(n) will be the statement “the 
distance for the n’th node off the queue is correct”.



Proving Uniform-Cost Correct

• For the base case of n = 1, the first node off 
is s with priority 0, and 0 is the correct 
distance from s to s.

• Now assume Q(n), that all the nodes already 
off the queue have the correct distance, and 
we will prove P(n+1), that the next node x’s 
distance is also correct.   



Proving Uniform-Cost Correct

• Look at the priority of x when it comes off 
the queue.  

• When x was put in the queue, it was given a 
priority which was the length of a path from s 
to some node y and by the edge (y, x) to x.  

• The node y has now come off the queue, so 
by our assumption, its priority represents the 
length of the best path from s to y.  



Proving Uniform-Cost Correct

• So we have the best path that goes through y 
to x.  Could there be another shorter path 
from s to x that does not go through y?

• Suppose there is, and that its last node before 
x is z.  The distance from s to z is smaller than 
the priority of x, so z must have come off the 
queue already and be marked with its correct 
distance (by the assumption).



Proving Uniform-Cost Correct

• But when z came off, an entry was put into 
the queue for each of its edges, including the 
edge (z, x).  

• This couldn’t have happened, though, because 
that entry would have lower priority than our 
entry for x, and x would already have come 
off the queue.  

• So we do in fact have the best path through 
any node.



Using a Heuristic

• The problem with uniform-cost search is that 
it searches all nodes that are closer to the 
start node than our goal node.  If we have 
some extra information, we can avoid doing 
this.  

• In a geographical search, you would not look 
at driving routes from Amherst to Albany that 
went through Boston.

Albany Amherst Boston



Using a Heuristic

• In the case of driving routes, we know that 
the driving distance from x to y cannot be 
shorter than the straight-line (“as the crow 
flies”) distance, though it could be much 
longer.  

• Such a lower bound on the actual distance 
gives us a heuristic, a piece of information 
that helps guide our search although it does 
not give us the answer.



Using a Heuristic

• We will still check all paths that have any 
hope of leading to the actual shortest one.  

• But if an edge takes us far away from the goal 
according to the heuristic, we will delay taking 
that entry out of the queue until or unless we 
find that there is nothing better.

• In particular, if the distance from the start to 
x, plus the heuristic’s distance from x to the 
goal, is more than the actual best-path distance 
to the goal, we never consider that path.



The A* Search Algorithm

• We assume that we have a heuristic 
function h such that for any node x, 
h(x) satisfies the admissibility 
rule 0 ≤ h(x) ≤ d(x, g).  

• We also have the technical 
requirement that h be 
consistent, meaning that if there 
is an edge from u to v with cost 
c(u, v), then h(u) ≤ h(v) + c(u, v).
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The A* Search Algorithm

• The A* search algorithm works 
exactly like uniform-cost search except 
for the priority measure in the priority 
queue.  To process the edge (x, y), in the 
uniform-cost search we let the priority be 
d(s, x) + c(x, y), the distance from s on the 
best path to x and then on the edge to y.  

• Now our priority is d(s, x) + c(x, y) + 
h(y). This is a lower bound on the distance 
from s through x and y to g, using the 
heuristic’s lower bound on d(y, g).
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Clicker Question #3

• In this directed graph, let the edge costs 
be given by the numbers and let h(X) = 5 
and h(Y) = 1.  We conduct an A* search 
from S, looking for goal node G.  Which 
one of these statements is true?

• (a) We discover the optimal path S-X-G 
without looking at Y.

• (b) The heuristic is not admissible. 

• (c) The optimal path is S-X-Y-G.

• (d) The first node we explore after S is X.
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Answer #3
• In this directed graph, let the edge costs be 

given by the numbers and let h(X) = 5 and 
h(Y) = 1.  We conduct an A* search from S, 
looking for goal node G.  Which one of 
these statements is true?

• (a) We discover the optimal path S-X-G 
without looking at Y.

• (b) The heuristic is not admissible. 

• (c) The optimal path is S-X-Y-G.

• (d) The first node we explore after S is X.

• (in lecture (d) ended in “Y” and was also true)
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A* Search

• We still mark each node x coming off the 
queue with d(s, x).  By essentially the same 
argument as for uniform-cost search, this 
value must be the correct best-path distance 
from s to x.

• We will never take a node off the queue if its 
priority is greater than the true distance from 
s to g.



Examples of A* Searches

• The smallest possible admissible heuristic is 
the function that is always zero.  In this case 
A* search becomes exactly the same as 
uniform-cost search.

• If the heuristic is as large as possible, so that 
h(x) = d(x, g), the A* search only looks at 
nodes that are on the shortest path (or on a 
shortest path, if there is a tie).  This is of 
course the best possible case for finding the 
best path quickly.



Examples of A* Searches

• In the geographical setting with crow-flies distance 
as the heuristic, how much the A* search saves 
depends on how well the air distances 
approximate the highway distances.  You would 
expect, for example, that the savings would be 
greater in flat areas than in mountainous ones.

• Whether we can benefit from A* in other 
circumstances depends again on how accurate the 
heuristic is as an estimate of the true distance.  It 
helps by pruning the tree of possible paths, 
eliminating unprofitable branches.



The 15 Puzzle

• The 15-puzzle is a 4 × 4 grid of 
pieces with one missing, and the 
goal is to put them in a certain 
arrangement by repeatedly 
sliding a piece into the hole. 

• We can imagine a graph where 
nodes are positions and edges 
represent legal moves. 



The 15 Puzzle

• In order to move from a given 
position to the goal, each piece must 
move at least the Manhattan distance 
from its current position to its goal 
position. 

• The sum of all these Manhattan 
distances gives us an admissible, 
consistent heuristic for the actual 
minimum number of moves to reach 
the goal.  So an A* search will be 
faster than a uniform-cost search.


