
CMPSCI 250: Introduction to
Computation

Lecture #26: Uniform-Cost and A* Search
David Mix Barrington
28 March 2014

Uniform-Cost and A* Search

• The All-Pairs and Single-Source Shortest Path
Problems

• Priority Queues

• The Uniform-Cost Search Algorithm

• Proving Uniform-Cost Search Correct

• Using a Heuristic to Improve Search

• The A* Search Algorithm

• Examples of A* Heuristics

Short Paths in Labelled Graphs

• Today we look at the problem of finding
shortest paths in a labelled graph.

• Let G be a graph (directed or undirected)
where every edge is labelled with a non-
negative cost.

• The simplest example is where nodes
represent places and edge labels represent
distances. Every path in the graph has its
total cost, which is the sum of the labels of
the edges on it.

Cost Matrices for Graphs

• We could write down all the edge costs in a
single-step distance matrix, where the
entry in row u and column v is 0 if u = v, the
edge cost if (u, v) is an edge, and infinity (∞)
otherwise.

• The all pairs shortest path problem is
to take this matrix and produce the best-
path distance matrix, where the (u, v)
entry is the length of the shortest path from
u to v, or ∞ if there is no path.

Matrix Multiplication

• The problem of getting from the single-step
matrix to the best path matrix can be solved
with the right sort of matrix multiplications,
as you may see in CMPSCI 311.

• But a matrix multiplication takes O(n3) steps,
which is prohibitively bad if n is, say, 106. With
a very large graph, simply storing one of
those matrices may be problematic as well.

Single-Source Shortest Paths

• A GPS navigation program, for example, is
usually asked to find the best path from u to
v, in terms of some cost function for edges.

• It turns out that the simplest algorithm to
solve this problem also gives the best path
from u to all other vertices (or at least all
those that are closer to u than v is). We call
this the single-source shortest path
problem.

Single-Source Shortest Paths

• Our algorithm will be a variant of the generic
search algorithm for directed graphs.

• Since we will be able to recognize previously
seen nodes, it will process each vertex once
and each edge once. Thus, its running time
will be O(e), where e is the number of edges.

Single-Source Shortest Paths

• Most graphs on which you would run this
algorithm are sparse, meaning that they have
many fewer than the O(n2) edges of a
complete graph. (Most nodes have only a few
neighbors.)

• An O(e) running time is thus much better
than anything that deals with all O(n2) entries
of a matrix.

• Our algorithm will also use only O(n) space,
as opposed to O(n2) for a matrix.

Priority Queues

• For DFS we kept the open list as a stack, and
for BFS we kept it as a queue. The simple
idea for our new algorithm is to keep it as a
priority queue.

• In a priority queue, each item stored has a
priority, and the basic operations are to
insert a new item and to remove the item
with minimum priority. (We choose to
refer to the item we want most as
“minimum” priority.)

Clicker Question #1

• Suppose I have a priority queue of characters, where
characters have lower priority if they come earlier
in alphabetical order. We can have multiple copies of
the same letter in the queue. If I do the operations
insert(‘a’), insert(‘c’),
removeMin(), insert(‘b’),
insert(‘a’), insert(‘d’),
removeMin(), removeMin(), what
character is returned by the last operation?

• (a) ‘a‘ (b) ‘b’ (c) ‘c’ (d) ‘d’

Answer #1

• Suppose I have a priority queue of characters, where
characters have lower priority if they come earlier
in alphabetical order. We can have multiple copies of
the same letter in the queue. If I do the operations
insert(‘a’), insert(‘c’),
removeMin(), insert(‘b’),
insert(‘a’), insert(‘d’),
removeMin(), removeMin(), what
character is returned by the last operation?

• (a) ‘a‘ (b) ‘b’ (c) ‘c’ (d) ‘d’

Priority Queues

• In CMPSCI 187 we saw how to implement a
priority queue with a heap, so that with n
elements in the queue we could carry out
either insertions or removals in O(log n)
time, maintaining the properties of the queue.

• In Java the priority can be given by the
compareTo method of the item’s class, or
by a separate Comparator object. In our
algorithm the priority of a node will be its
best-path distance from the source node.

Uniform-Cost Search

• Our uniform-cost search algorithm is
simply the generic search, where the open list
is kept as a priority queue that returns the
node that is closest to the start node.

• We begin with the start node s in the queue.
We take s out, look at all the nodes that have
edges from the start node, and insert the
endpoints of those edges into the queue,
marked with the length of those edges.

Uniform-Cost Search
• In general when we take a node x off the queue,

with its distance from the start, then (if it is not
the goal) we look at its neighbors, compute the
distance from s through x to each one, and insert
those nodes into the queue with those distances.

• There may be multiple entries in the queue for
the same node -- if so we only look at the one
closest to s.

• When the goal node g comes off the queue, we
declare victory and report the distance from s to
g, which is just the priority of g in the queue.

Clicker Question #2
• Suppose we carry out a UCS of

this weighted directed graph,
starting at s with goal node g.
After we process s and one more
node, what nodes will be in the
priority queue?

• (a) c-2, b-3, a-4

• (b) b-3, a-4, g-14

• (c) b-3, a-4, g-6, c-7

• (d) nothing as we declare victory

s
3

b

3

4
52

4 a

c

g

12

Answer #2
• Suppose we carry out a UCS of

this weighted directed graph,
starting at s with goal node g.
After we process s and one more
node, what nodes will be in the
priority queue?

• (a) c-2, b-3, a-4

• (b) b-3, a-4, g-14

• (c) b-3, a-4, g-6, c-7

• (d) nothing as we declare victory

s
3

b

3

4
52

4 a

c

g

12

Proving Uniform-Cost Correct

• From our results for general search, we know that
we will terminate and report victory if and only if a
path to the goal node exists. The only question is
whether the distance we find is really the minimum
distance possible.

• Here is the important invariant. When any node x
comes off the queue, its priority is the length of the
shortest path from s to x. We prove this by strong
induction on the number of nodes that have come
off the queue -- P(n) will be the statement “the
distance for the n’th node off the queue is correct”.

Proving Uniform-Cost Correct

• For the base case of n = 1, the first node off
is s with priority 0, and 0 is the correct
distance from s to s.

• Now assume Q(n), that all the nodes already
off the queue have the correct distance, and
we will prove P(n+1), that the next node x’s
distance is also correct.

Proving Uniform-Cost Correct

• Look at the priority of x when it comes off
the queue.

• When x was put in the queue, it was given a
priority which was the length of a path from s
to some node y and by the edge (y, x) to x.

• The node y has now come off the queue, so
by our assumption, its priority represents the
length of the best path from s to y.

Proving Uniform-Cost Correct

• So we have the best path that goes through y
to x. Could there be another shorter path
from s to x that does not go through y?

• Suppose there is, and that its last node before
x is z. The distance from s to z is smaller than
the priority of x, so z must have come off the
queue already and be marked with its correct
distance (by the assumption).

Proving Uniform-Cost Correct

• But when z came off, an entry was put into
the queue for each of its edges, including the
edge (z, x).

• This couldn’t have happened, though, because
that entry would have lower priority than our
entry for x, and x would already have come
off the queue.

• So we do in fact have the best path through
any node.

Using a Heuristic

• The problem with uniform-cost search is that
it searches all nodes that are closer to the
start node than our goal node. If we have
some extra information, we can avoid doing
this.

• In a geographical search, you would not look
at driving routes from Amherst to Albany that
went through Boston.

Albany Amherst Boston

Using a Heuristic

• In the case of driving routes, we know that
the driving distance from x to y cannot be
shorter than the straight-line (“as the crow
flies”) distance, though it could be much
longer.

• Such a lower bound on the actual distance
gives us a heuristic, a piece of information
that helps guide our search although it does
not give us the answer.

Using a Heuristic

• We will still check all paths that have any
hope of leading to the actual shortest one.

• But if an edge takes us far away from the goal
according to the heuristic, we will delay taking
that entry out of the queue until or unless we
find that there is nothing better.

• In particular, if the distance from the start to
x, plus the heuristic’s distance from x to the
goal, is more than the actual best-path distance
to the goal, we never consider that path.

The A* Search Algorithm

• We assume that we have a heuristic
function h such that for any node x,
h(x) satisfies the admissibility
rule 0 ≤ h(x) ≤ d(x, g).

• We also have the technical
requirement that h be
consistent, meaning that if there
is an edge from u to v with cost
c(u, v), then h(u) ≤ h(v) + c(u, v).

V

U

GS

The A* Search Algorithm

• The A* search algorithm works
exactly like uniform-cost search except
for the priority measure in the priority
queue. To process the edge (x, y), in the
uniform-cost search we let the priority be
d(s, x) + c(x, y), the distance from s on the
best path to x and then on the edge to y.

• Now our priority is d(s, x) + c(x, y) +
h(y). This is a lower bound on the distance
from s through x and y to g, using the
heuristic’s lower bound on d(y, g).

Y

X

GS

Clicker Question #3

• In this directed graph, let the edge costs
be given by the numbers and let h(X) = 5
and h(Y) = 1. We conduct an A* search
from S, looking for goal node G. Which
one of these statements is true?

• (a) We discover the optimal path S-X-G
without looking at Y.

• (b) The heuristic is not admissible.

• (c) The optimal path is S-X-Y-G.

• (d) The first node we explore after S is X.

Y

X

GS

2

4

4

7

1

Answer #3
• In this directed graph, let the edge costs be

given by the numbers and let h(X) = 5 and
h(Y) = 1. We conduct an A* search from S,
looking for goal node G. Which one of
these statements is true?

• (a) We discover the optimal path S-X-G
without looking at Y.

• (b) The heuristic is not admissible.

• (c) The optimal path is S-X-Y-G.

• (d) The first node we explore after S is X.

• (in lecture (d) ended in “Y” and was also true)

Y

X

GS

2

4

4

7

1

A* Search

• We still mark each node x coming off the
queue with d(s, x). By essentially the same
argument as for uniform-cost search, this
value must be the correct best-path distance
from s to x.

• We will never take a node off the queue if its
priority is greater than the true distance from
s to g.

Examples of A* Searches

• The smallest possible admissible heuristic is
the function that is always zero. In this case
A* search becomes exactly the same as
uniform-cost search.

• If the heuristic is as large as possible, so that
h(x) = d(x, g), the A* search only looks at
nodes that are on the shortest path (or on a
shortest path, if there is a tie). This is of
course the best possible case for finding the
best path quickly.

Examples of A* Searches

• In the geographical setting with crow-flies distance
as the heuristic, how much the A* search saves
depends on how well the air distances
approximate the highway distances. You would
expect, for example, that the savings would be
greater in flat areas than in mountainous ones.

• Whether we can benefit from A* in other
circumstances depends again on how accurate the
heuristic is as an estimate of the true distance. It
helps by pruning the tree of possible paths,
eliminating unprofitable branches.

The 15 Puzzle

• The 15-puzzle is a 4 × 4 grid of
pieces with one missing, and the
goal is to put them in a certain
arrangement by repeatedly
sliding a piece into the hole.

• We can imagine a graph where
nodes are positions and edges
represent legal moves.

The 15 Puzzle

• In order to move from a given
position to the goal, each piece must
move at least the Manhattan distance
from its current position to its goal
position.

• The sum of all these Manhattan
distances gives us an admissible,
consistent heuristic for the actual
minimum number of moves to reach
the goal. So an A* search will be
faster than a uniform-cost search.

