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General Search, DFS, and BFS

• Four Examples of Search Problems

• State Spaces, Search, and Optimization

• The Generic Search Algorithm

• When Do We Know That Generic Search 
Works?

• Depth-First Search

• Breadth-First Search

• Iterative Deepening Depth-First Search



Examples of Search Problems

• Many computational problems are searches 
over some state space.

• A navigation program is given a start 
location and an end location, and has a 
database of information about streets.  

• It should not only find a path from start to 
finish, but the best path in terms of distance 
or driving time.



Examples of Search Problems

• A sudoku puzzle is a 9 × 9 
grid where each square is to 
be filled with a number from 
1 through 9.  

• Some of the numbers are 
initially filled in, and the goal is 
to fill in the rest while 
obeying certain rules.



Examples of Search Problems

• The eight queens puzzle is 
to place eight chess queens on 
an 8 × 8 board so that no queen 
attacks another horizontally, 
vertically, or diagonally.

• The Rubik’s cube can be 
placed in any of about 4.3 × 1019 
different positions, and the goal 
is to return it to the start 
position by making legal moves.



State Spaces and Organization

• In each of these problems there is a set of 
possible states we may be in, and a set of 
legal moves among those states.  

• The search problem is to find a path from 
one state to another if there is one, and the 
optimization problem is to find the 
cheapest path (or sometimes the cheapest 
state) according to some cost measure.



State Spaces and Organization

• At least conceptually, we can represent the 
state space and moves as a directed 
graph, with states as the nodes and directed 
edges for the moves.  

• But it may not be possible to store the entire 
graph in a computer at one time. We say that 
the graph is implicitly represented if we 
can remember any given state and can 
calculate the possible moves out of it.



State Spaces and Organization

• How we define the state space 
can have an enormous impact on 
the difficulty of the problem.  

• In the eight queens problem, 
there are over 4 billion ways to 
place eight queens on 64 spaces, 
but only 40320 that have one 
queen per row and one per 
column.



The Generic Search Algorithm

• We can define a generic search 
algorithm for any state space and set of 
moves.  It is underspecified in that we 
won’t always say what will happen, but only 
what might happen.

• The key data structure is the open list, 
which is a set of states that still need their 
neighbors to be searched.  We are looking for 
a path from the start node s0 to any state in a 
given set of goal states.



Pseudocode for Generic Search

open list = {s0};
while (open list is not empty) {
   s = a state taken from the open list;
   if (s is a goal state) declare 
                          victory;
   else for (each neighbor n of s)
      add n to the open list;
   remove s from the open list;}
declare defeat;



Does Generic Search Work?

• We would like our search to declare victory 
whenever a path exists from s0 to any goal 
state, and to declare defeat whenever no such 
path exists.  

• When can we count on this?  Here are four 
lemmas, proved carefully in the text.

• Lemma 1: If the search declares victory, we 
can prove by induction that a path exists.



Clicker Question #1
• I want to prove that if state q is ever put on the 

open list during a generic search, there is a path 
from s0 to q.  What is my strong inductive step?

• (a) If q is on the list because q = s0, then there is 
the empty path from s0 to itself.

• (b) If q is on the list, it has an edge from some r.

• (c) If every node already put on the list has a path 
from s0, then so does q, a new node on the list.

• (d) If the list never has any nodes, they all have 
paths from s0.



Answer #1
• I want to prove that if state q is ever put on the 

open list during a generic search, there is a path 
from s0 to q.  What is my strong inductive step?

• (a) If q is on the list because q = s0, then there is 
the empty path from s0 to itself.

• (b) If q is on the list, it has an edge from some r.

• (c) If every node already put on the list has a path 
from s0, then so does q, a new node on the list.

• (d) If the list never has any nodes, they all have 
paths from s0.



Does Generic Search Work?

• Lemma 2: If the search declares defeat, we 
can prove that there is no such path.  (We 
use the contrapositive method -- if a path 
exists we won’t declare defeat before we find 
it.)

• Lemma 3: If a path exists, and every state 
added to the open list is eventually removed 
from it, the search will eventually terminate 
and declare victory.



Does Generic Search Work?

• Lemma 4: If no path exists, and there are 
only finitely many states in the search space, 
and each state enters the open list only 
finitely many times, then the search will 
eventually terminate and declare defeat.

• Both conditions of Lemma 4 are necessary.  If 
either fails to hold, we could fail to terminate 
in a case with no path.



Clicker Question #2
• Suppose there is no finite path from s0 to the 

goal node g.  Three of these conditions could 
cause a generic search to run forever without 
declaring defeat.  Which one could not?

• (a) A state s goes on and off the list infinitely 
many times.

• (b) The search ends as the open list is empty. 

• (c) Some state s is placed on the list and stays 
there forever.

• (d) Infinitely many states are available to the list.



Answer #2
• Suppose there is no finite path from s0 to the 

goal node g.  Three of these conditions could 
cause a generic search to run forever without 
declaring defeat.  Which one could not?

• (a) A state s goes on and off the list infinitely 
many times.

• (b) The search ends as the open list is empty. 

• (c) Some state s is placed on the list and stays 
there forever.

• (d) Infinitely many states are available to the list.



Polynomial, Exponential Search

• A search algorithm that will eventually find a 
path to its goal is not much use if it takes too 
long to do so.  We’d like to be able to 
estimate the number of steps we will need.   

• But we may not even know the size of the 
state space if it is implicitly represented.  
(Sometimes we just have an upper bound on 
it.)



Polynomial, Exponential Search

• Mathematical analysis of running times is 
usually for parametrized problems, where 
there is some size factor n, like the size of the 
space or the maximum length of paths that 
interest us.

• We define a function T(n), so that T(n) is the 
maximum (or worst-case) running time 
taken on any input of size n.



Polynomial, Exponential Search

• A key distinction is between time functions 
that are polynomial in n, such as n2 or n10, 
and functions that are exponential in n 
such as 2n.  The latter are much worse and 
usually become prohibitive for even very 
small n.

• Exhaustive search of all paths is usually 
exponential -- if each state has d neighbors 
there are about dn paths of length n.



Depth-First Search

• Our generic algorithm didn’t specify which 
state we take off the open list when we need 
a new one.  

• We could always take off the one that was 
most recently put on, making the open list a 
Last-In-First-Out structure or a stack.

• This is the defining feature of depth-first 
search.



Depth-First Search

• Another issue is whether we can recognize 
states that we have already explored when 
we see them again.  

• If we can store the whole graph we can just 
mark these nodes, and if not we could 
possibly keep a closed list.  But in general 
space is more expensive than time when we 
search huge spaces.



Depth-First Search

• Depth-first search is greedy in that it 
explores all the consequences of its first 
choice before considering alternatives to it.  

• If our search is totally blind, we could even 
get stuck in an infinite cycle and never 
complete the search.

• In a directed acyclic graph we are at 
least guaranteed to finish the search.



A Depth-First Search Example

• Consider a Manhattan grid 
where we start at the 
southwest corner and edges 
are directed north and east.  
Let’s look at what happens if 
our state space is the points 
whose “Manhattan distance” 
from the start is at most 4, 
and there are no goal nodes.  
(This is the worst case for 
the time of a search.)



Clicker Question #3

• What is the best-path 
distance from the red node 
to the blue node?

• (a) undefined

• (b) 3

• (c) 2

• (d) √5



Answer #3

• What is the best-path 
distance from the red node 
to the blue node?

• (a) undefined

• (b) 3

• (c) 2

• (d) √5



A Depth-First Search Example

• We begin by putting (1, 0), 
(2, 0), (3, 0), and (4, 0) on the 
stack.  We pop (4, 0) off as it 
has no neighbors, and return 
to (3, 0) to check (3, 1). 

•  When that fails we return to 
(2, 0) to check (2, 1), which 
runs searches of (3, 1) and 
(2, 2) -- it doesn’t know that 
it has already checked (3, 1). 



A Depth-First Search Example

• Finally we return to (1, 0), search 
(1, 1) and its descendants, return 
to (0, 0), and search (0, 1) and all 
of its descendants.  

• We searched each of the 24 = 
16 paths  even though there 
were only five nodes with no 
descendants.  If we don’t notice 
previously seen nodes, we will 
search 2n paths if we search the 
grid up to distance n.



Breadth-First Search

• The other natural way to manage the open 
list is with a First-In-First-Out 
structure, or a queue.  This has a number of 
advantages.

• We will find a path if one exists, as long as 
each node has only finitely many neighbors.  

• This is because we put all nodes at distance 1 
on the queue, then distance 2, then distance 
3, and so on.  



Breadth-First Search

• Once we reach the distance of the nearest 
goal node, we will look at all nodes at that 
distance and thus find that goal node.  

• Thus we find the shortest path, in terms of 
number of edges.  

• But if different edges have different costs, this 
may not be the cheapest path.



Comparing DFS and BFS
• Depth-first search might be much faster if its 

greedy search succeeds immediately -- breadth-
first search must check all paths shorter than 
the right one.  

• BFS also uses much more memory in general, 
as all the nodes at a given distance are stored 
on the queue at once.

• Without recognizing already-seen nodes, BFS 
and DFS take about the same time on our 
example.  This is because they put a node on 
the open list once for each path to it.



Iterative Deepening DFS

• When we can’t recognize already-seen 
nodes, a hybrid approach between DFS and 
BFS, called iterative deepening DFS, can 
combine the advantages of both.

• The idea is to carry out a DFS but truncate 
it at distance 1.  If that fails, DFS again 
truncating to distance 2, then distance 3, and 
so on.  Like BFS, this is guaranteed to find a 
shortest path in terms of number of edges.



Iterative Deepening DFS

• We only need to keep a stack rather than a queue.  
If the graph has degree d, the stack for the distance-
k DFS will have at most k nodes on it, while the 
queue for the corresponding BFS might have as 
many as dn nodes on it.

• We appear to be wasting time by doing all the 
shorter searches before we discover the right 
distance.  But since these searches get exponentially 
longer with k, the distance-k one takes more time 
than all the others put together.  So we waste only a 
small fraction of the time for the right search.


