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Variations on Induction

• Not Starting at Zero

• Justifying the “Start Anywhere” Rule

• Induction on the Odds or the Evens

• Strong Induction

• The Law of Strong Induction

• Example: Existence of a Factorization

• Example: Making Change



Not Starting at Zero

• Last lecture we claimed “for any n, the n’th 
odd number is 2n-1” but we didn’t prove this 
by induction.  

• The reason was that given our Law of 
Mathematical Induction, we would need to 
prove P(0), which says “the 0’th odd number 
is -1”, and this doesn’t make much sense.

• Of course the statement P(1) says “the first 
odd number is 1”, which is true.  



Not Starting at Zero

• Also, the inductive case is fine -- if we assume 
that the n’th odd number is 2n - 1, then 
clearly the n+1’st odd number should be two 
greater, or (2n - 1) + 2 = 2(n + 1) - 1.

• It seems reasonable to have a Law of Start 
Anywhere Induction that says “if you prove 
P(k) for any integer k, and prove ∀n: ((n ≥ k) 
∧ P(n)) → P(n+1), you may conclude ∀n: (n ≥ 
k) → P(n)”.



Digression: Bounded Quantifiers

• Suppose I have variables whose type is 
“natural”, but I want to quantify over only the 
naturals that are at least 3.

• This works differently depending on the 
quantifier.

• If I say “there exists a natural that is at least 
3” in symbols, this is “∃x: (x ≥ 3) ∧ ...”

• But to say “for every number that is at least 
3, we write “∀x: (x ≥ 3) → ...”



Justifying  “Start Anywhere”
• Using the intuition about dominoes, for 

example, the Start Anywhere Rule is just as 
convincing as the ordinary rule.  

• If we push over the k’th domino, and every 
domino at or after the k’th pushes over the 
next one, every domino after the k’th will 
eventually be pushed over.  

• But it would be nice to know that we don’t 
need a new axiom, so we will prove the Start 
Anywhere rule by ordinary mathematical 
induction.



Justifying “Start Anywhere”

• Suppose we have a predicate P(x), for integer 
x, and we have proved P(k) and ∀x: ((x ≥ k) ∧ 
P(x)) → P(x+1) for some integer k.  

• For any natural n, we define a new predicate 
Q(n)  to be P(k+n).  

• Now we will prove the statement ∀n: Q(n) 
by ordinary induction.



Justifying “Start Anywhere”

• Q(0) is the statement P(k), which we are 
given.  

• For the inductive step, we assume Q(n) which 
is P(k+n). We specify the other premise to x 
= k + n, giving the statement “(k + n ≥ k) ∧ 
P(k+n)) → P(k+n+1)”.  

• Since n is a natural, k + n ≥ k is true, so we 
get P(k+n+1) which is the same as Q(n+1).  
The ordinary induction is done.



More on “Start Anywhere”

• Having proved ∀n: Q(n) by ordinary induction, we 
can translate it back into terms of P as ∀n: P(k
+n), which means that P is true for all arguments 
k or greater.  This is the conclusion of the Start 
Anywhere Rule.

• Another way to think about this is that we are 
doing induction on a new inductively defined 
type, in this case “integers that are ≥ k”.  This 
type could be defined as what we get by starting 
from k and taking successors, and the fact that it 
contains nothing else is our induction rule.



More on “Start Anywhere”

• If k is positive, we can also prove the “Start at 
k Rule” by ordinary induction in another way.  

• Let Q(n) be the predicate “(n ≥ k) → P(n)”.  
Then Q(0) is true, and we can prove ∀n: Q(n) 
→ Q(n+1) by cases.  

• If n < k we can use Vacuous Proof.  If n = k 
we use our premise P(k).  And if n > k, Q(n) 
gives us P(n), and we can use Specification on 
the other premise to give us P(n+1).



Clicker Question #1

• “If X is a convex polygon with k sides, then X 
can be divided into exactly k - 2 triangles by 
drawing lines among its vertices.”  If I wanted 
to prove this (true) geometry fact for all k by 
induction, what should be my starting point?

• (a) k = 3

• (b) k = 2

• (c) k = 1

• (d) k = 0



Answer #1

• “If X is a convex polygon with k sides, then X 
can be divided into exactly k - 2 triangles by 
drawing lines among its vertices.”  If I wanted 
to prove this (true) geometry fact for all k by 
induction, what should be my starting point?

• (a) k = 3

• (b) k = 2

• (c) k = 1

• (d) k = 0



Induction on the Odds or Evens

• The first several odd perfect squares: 1, 9, 25, 
49, and 81, are all congruent to 1 modulo 8.  
It’s easy to prove by modular arithmetic that 
every odd number satisfies n2 ≡ 1 (mod 8), 
but suppose we want to prove this by 
induction?

• We now know how to start at n = 1 rather 
than n = 0, but our inductive step poses a 
different problem.  We can’t say that n2 ≡ 1 
for even n, because it isn’t true. 



Induction on the Odds or Evens

• If we let P(n) be “if n is odd, then n2 ≡ 1 (mod 
8)”, then P(n) is true for all n, but the 
inductive hypothesis won’t help us in a proof 
because it is true vacuously -- it says nothing 
about n2 that we could use for (n+1)2.

• We can easily prove P(n) → P(n+2), however, 
and this looks like the correct inductive step 
for a statement about just the odds or just 
the evens.  



Induction on the Odds or Evens

• We have another new induction rule: “If k is 
odd, P(k) is true, and ∀n: (P(n) ∧ (n is odd) ∧ 
(n ≥ k)) → P(n+2) is true, then ∀n: ((n is 
odd) ∧ (n ≥ k)) → P(n) is true.”

• Of course there is a similar rule for the 
evens.

• As before, we can prove the validity of these 
rules by ordinary induction.



Clicker Question #2

• “If n is a natural and n ≡ 3 (mod 5), then n2 + 
1 ≡ 0 (mod 5).”  If I want to prove this fact by 
induction, how should I do it?

• (a) base P(0), induction P(n) → P(n+1)

• (b) base P(3), induction P(n) → P(n+1)

• (c) base P(3), induction P(n) → P(n+5)

• (d) base P(5), induction P(n) → P(n+3) 



Answer #2

• “If n is a natural and n ≡ 3 (mod 5), then n2 + 
1 ≡ 0 (mod 5).”  If I want to prove this fact by 
induction, how should I do it?

• (a) base P(0), induction P(n) → P(n+1)

• (b) base P(3), induction P(n) → P(n+1)

• (c) base P(3), induction P(n) → P(n+5)

• (d) base P(5), induction P(n) → P(n+3) 



Strong Induction

• The difficulty of ordinary induction in this last 
case was that the truth of P(n+1) depended 
on P(n-1) rather than on P(n), so that the 
premise of the ordinary inductive step P(n) 
→ P(n+1) gave no help.

• If we return to the domino metaphor, all we 
actually care about is that every domino is 
knocked over, whether by the preceding 
domino or some other earlier one. 



Strong Induction

• We can modify our Law of Induction to get a 
new Law of Strong Induction, which will 
handle these situations.  The new law will 
work in any situation where the old one will, 
so we could just use it automatically.  

• But in the many situations where ordinary 
induction works, using it makes for a clearer 
proof.  So if we don’t recognize the need for 
strong induction immediately, we start an 
ordinary induction proof and convert it in 
midstream if necessary. 



The Law of Strong Induction

• The Law of Strong Induction is as follows:

• Given a predicate P(n), define Q(n) to be the 
predicate ∀i: (i ≤ n) → P(i).  

• Then if we prove both P(0) and ∀n: Q(n) → 
P(n+1), we may conclude ∀n: P(n).

• We’ll now justify this formally by using 
ordinary induction.



The Law of Strong Induction

• The reason this is valid is that those two 
steps are exactly what we need for an 
ordinary induction proof of ∀n: Q(n).  

• Q(0) and P(0) are the same statement, and 
Q(n+1) is equivalent to Q(n) ∧ P(n+1).  

• So Q(n) → P(n+1) allows us to derive Q(n) 
→ Q(n+1), the inductive step of our ordinary 
induction.  (And of course ∀n: Q(n) implies 
∀n:P(n).)  



Using Strong Induction

• In practice, this means that if in the middle of 
an ordinary induction we decide that Q(n) 
would be a more useful inductive hypothesis 
than P(n), we just assume it, retroactively 
converting the proof to a strong induction. 

•  There is nothing that we need to add to our 
conclusion, as by proving P(n+1) we also 
prove Q(n+1).



Existence of a Factorization

• Let P(n) be the statement “n can be written 
as a product of prime numbers”.  

• We have asserted that this P(n) is true for all 
positive n (0 cannot be written as such a 
product).  Our “proof” has been a recursive 
algorithm that generates a sequence of 
primes that multiply to n.  

• Now with Strong Induction (starting from 1 
rather than 0) we can make this idea into a 
formal proof.



Existence of a Factorization

• We begin by noting that P(1) is true, since 1 is 
the product of an empty sequence of primes. 

•  Now we let Q(n) be the statement “((i ≥ 1) 
∧ (i ≤ n)) → P(i)”.  We can finish the strong 
induction by proving the strong inductive step 
∀n: ((n ≥ 1) ∧ Q(n)) → P(n+1).  

• (We need the “(n ≥ 1)” so we are not asked 
to deal with the false statement P(0).)



Existence of a Factorization

• But this proof is easy!  Let n be an arbitrary 
positive natural.  If n+1 is prime, P(n+1) is 
true because n+1 is the product of itself. 

• Otherwise, by the definition of primality, n+1 
= a × b where a and b are each in the range 
from 2 to n.  Since a ≤ n and b ≤ n, each can 
be written as a product of primes by the 
strong IH.  And multiplying these two 
sequences gives us one for n+1.



Clicker Question #3
• “If n ≥ 1, the number of tests needed for 

binary search on a list of length n is the ceiling 
of log2 n.” To prove this by induction on n, I will 
use the fact that one test at worst reduces the 
size of my search to (n-1)/2 (Java division).  
What steps do I need for my strong induction?

• (a) base P(1), induction P(k) → P(k+1)

• (b) base P(1), induction P(k) → P(2k)

• (c) base P(1), induction P(k) → P(2k) ∧ P(2k+1)

• (d) base P(1) and P(2), induction P(k) → P(k+2)



Clicker Question #3
• “If n ≥ 1, the number of tests needed for 

binary search on a list of length n is the ceiling 
of log2 n.” To prove this by induction on n, I will 
use the fact that one test at worst reduces the 
size of my search to (n-1)/2 (Java division).  
What steps do I need for my strong induction?

• (a) base P(1), induction P(k) → P(k+1)

• (b) base P(1), induction P(k) → P(2k)

• (c) base P(1), induction P(k) → P(2k) ∧ P(2k+1)

• (d) base P(1) and P(2), induction P(k) → P(k+2)



Example: Making Change

• Suppose I have $5 and $12 gift certificates, 
and I would like to be able to give someone a 
set of certificates for any integer number of 
dollars.  

• I clearly can’t do $4 or $11, but if the amount 
is large enough I should be able to do it.  By 
trial and error (or more cleverly) you can 
show that $43 is the last bad amount.



Example: Making Change

• Let P(n) be the statement “$n can be made 
with $5’s and $12’s”.  

• I’d like to prove ∀n: (n ≥ 44) → P(n) by 
strong induction, starting with P(44).  

• It’s easy to prove ∀n: P(n) → P(n+5), which 
helps with the strong inductive step, namely 
∀n: Q(n) → P(n+1), where Q(n) is the 
statement ∀i:((i ≥ 44) ∧ (i ≤ n)) → P(i).  



Example: Making Change

• So let n be arbitrary and assume Q(n).  If n ≥ 
48, Q(n) includes P(n-4), and I can prove P(n
+1) from P(n-4).  But there are the cases of 
P(45), P(46), P(47), and P(48) which I have to 
do separately.  One way to think of this is 
that with an inductive step of P(n) → P(n+5), 
I need five base cases.

• If my sum proving P(n) had at least two $12’s, 
I could replace them with five $5’s and get 
the inductive step for an ordinary induction.


