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Divisibility and Primes

• Introduction to Number Theory

• An Application: Hashing With Open 
Addressing

• Do Incredibly Large Naturals Even Exist?

• Primes and Prime Factorization

• The Sieve of Eratosthenes

• Congruences and Congruence Classes



Introduction to Number Theory

• We’ve defined the natural numbers to be 
the non-negative integers {0, 1, 2, 3,...}.  
Number theory is the branch of 
mathematics that deals with the naturals.

• We’ll define properties of the naturals using 
quantifiers, starting from basic predicates like 
x = y, x ≤ y, x + y = z, and x ⋅ y = z.  We will 
give definitions of the naturals and these 
predicates and prove the properties from 
them.



Introduction to Number Theory

• Because counting is a fundamental human 
activity, and the naturals are an abstraction of 
counting, number theory has a long history. 

•  We’ll see results originally proved in ancient 
Greece and in medieval China.  But there are 
easily stated questions in number theory to 
which no one knows the answer.

• Remember that naturals, and integers in 
general, are different from ints.



Application: Hashing

• In CMPSCI 187 we studied hashing, where 
a large address space is mapped into a smaller 
space called a hash table.  

• The mapping from address space to hash 
table cannot be one-to-one, and we have a 
problem if it fails to be one-to-one on the 
address values that we actually use. 

•  A collision is when two relevant addresses 
are mapped to the same hash address.



Application: Hashing
• One way of computing a hash address is to 

divide the original address by the size s of the 
hash table and let the remainder, in the range 
from 0 to s - 1, be the hash address.

• One way to deal with collisions, called open 
addressing, has us look at new hash 
addresses if the first hash address h is full -- 
we look at h + k, h + 2k, h + 3k,... until we 
find an empty space in the table.

• If k = 1, we will find an open space if one 
exists.  What about for other values of k?



Incredibly Large Naturals

• Some questions of number theory involve 
ridiculously large naturals.  For example, the 
Goldbach Conjecture says that every 
even natural greater than 2 is the sum of two 
prime numbers.  

• It is known that if this fails, it fails on a very 
large number (greater than 1018 according to 
Wikipedia).  One paper in theoretical 
computer science treats all input sizes up to 
exp*(20) (a tower of twenty two-to-the 
operations) as a special case.



Incredibly Large Naturals

• If naturals exist in order to count sets, what 
about naturals that are too big to denote any 
set of material objects in the universe?  Or 
numbers so big that no computer could ever 
name them?  

• We say in mathematics that given any 
property of naturals, either a natural with 
that property exists or it doesn’t.  This is 
something of an article of faith.



Provability in Number Theory

• Logicians have shown that given any proof 
system for number theory, one of two things 
must happen.  (This is Godel’s Theorem.)

• Either the system is able to prove false 
statements (it is unsound), or there are 
statements that are true, but not provable in the 
system (it is incomplete).

• There is some question about what it means 
for an unprovable statement to be true.



Prime Numbers

• We’ll begin now with the foundations of 
number theory.  The first concept, of one 
natural dividing another, was in last Friday’s 
lecture.  We defined the division relation D so 
that D(x, y) means ∃z: x⋅z = y.

• A prime number is a natural, greater than 
1, that is divided only by itself and 1.  In 
symbols, we say P(x) ↔ (x > 1) ∧ ∀y: D(y, x) 

→ (y = 1 ∨ y = x).



Composite Numbers

• Numbers greater than 1 that are not prime 
are called composite -- a composite x can 
be written as y⋅z where both y and z are 
greater than 1.  

• By convention, we say that 0 and 1 are 
neither prime nor composite.

• A composite number can be factored, and 
its factors can also be factored if they are 
composite. 



Clicker Question #1

• Which of the following statements is not true?

• (a) 35 is a composite number.

• (b) For any prime natural n, n + 1 is composite.

• (c) If n is a natural greater than 2, n2 - 1 is not 
prime.

• (d) Every prime number greater than 10 has last 
digit 1, 3, 7, or 9.



Answer #1

• Which of the following statements is not true?

• (a) 35 is a composite number. (7 times 5)

• (b) For any prime natural n, n+1 is composite. (2, 3)

• (c) If n is a natural greater than 2, n2 - 1 is not 
prime. (n + 1 times n - 1)

• (d) Every prime number greater than 10 has last 
digit 1, 3, 7, or 9. (else it’s divisible by 2 and/or 5)



Prime Factorizations

• If we keep factoring the factors of our original 
composite number as long as we can, we reach a 
point where all our factors are prime.

• For example, 504 = 2⋅252 = 2⋅6⋅42 = 2⋅6⋅2⋅21 
= 2⋅2⋅3⋅2⋅7⋅3.

• Or I could have made other choices: 504 = 
126⋅4 = 63⋅2⋅4 = 9⋅7⋅2⋅4 = 3⋅3⋅7⋅2⋅4 = 
3⋅3⋅7⋅2⋅2⋅2.  I have the same prime factors (and 
the same number of each) in a different order.



Prime Factorizations

• We can be a bit more systematic about 
factoring by first taking out 2’s until the 
number is odd, then taking out as many 3’s as 
we can, then as many 5’s, and so on.

• This can be coded as either an iterative or a 
recursive algorithm.

• Doing this by hand means lots of tests for 
divisibility, which can be aided by tricks that 
are described in Excursion 3.2 of the text.



Clicker Question #2

• Factor the number 280 completely.  How 
many factors do you get, and how many 
different factors? (For example 20 = 2⋅2⋅5 has 
three factors, and two different factors.)

• (a) three factors, all different

• (b) five factors, four different factors

• (c) six factors, three different factors

• (d) five factors, three different factors



Answer #2

• Factor the number 280 completely.  How 
many factors do you get, and how many 
different factors? (For example 20 = 2⋅2⋅5 has 
three factors, and two different factors.)

• (a) three factors, all different

• (b) five factors, four different factors

• (c) six factors, three different factors

• (d) five factors, three different factors 
(2⋅2⋅2⋅5⋅7)



Primality Testing

• If we are trying to factor x, and we fail to find 
any number between 1 and x that divides x, 
we have shown that x is prime.

• This is the trial division method to test for 
primality.  We can improve its efficiency by 
only testing trial divisors up to the square 
root of x. (Why is this all right?)

• Testing a 100-digit number this way would be 
horrible even with a computer, as the square 
root of a 100-digit number has about 50 digits.



Primality Testing

• Is there a better way to test whether a large 
number is prime?

• In practice, we do this with a randomized 
algorithm.  There is a property of numbers a < 
n that no a’s have if n is prime, and most a’s have if 
n is composite.  We try many random a’s, and 
either prove n to be composite or build up 
confidence that n is prime.

• There’s a practical algorithm that gets a certain 
answer, but it is slower than the randomized test.



The Sieve of Eratosthenes

• The ancient Greeks 
developed a system to 
simultaneously test all the 
numbers in a given range for 
primality.  

• In the picture, we have listed 
all the numbers from 1 
though 100.  
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The Sieve of Eratosthenes
• We identify 2 as prime and cross 

out all its multiples.  We do the 
same for 3, 5 and 7.  The next 
prime, 11, is bigger than the square 
root of 100, so we don’t need to 
check it.  

• 25 of these 100 naturals are prime.  
They get rarer as we go on.

• Note that after 2 and 3, every 
prime is one more or one less 
than a multiple of 6.
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Congruences and Classes

• We have one more major definition in 
number theory.  Recall that the parity relation 
P, where P(x, y) means that x and y are both 
odd or both even, is an equivalence relation.  

• We can write this using the Java % operation, 
in which x % y is the remainder when y is 
divided by x.  P(x, y) is true if and only if x % 2 
== y % 2.  Equivalently, P(x, y) is true if 2 
divides x - y (or else y - x, whichever is a 
natural).



Congruences and Classes

• If P(x, y) is true we also say that x and y are 
congruent modulo 2.  

• In general x and y are congruent modulo 
k if x % k == y % k, or equivalently if k 
divides x - y or y - x.  For example, 3 and 17 
are congruent modulo 7.

• For another example, two naturals are 
congruent modulo 10 if and only if they have 
the same last digit.



Clicker Question #3

• Which of the following statements is false?

• (a) Any two numbers in the set {1, 11, 111, 
1111,...} are congruent modulo 11.

• (b) Any two numbers in the set {1, 11, 111, 
1111,...} are congruent modulo 10.

• (c) If x > 2 and x is prime, x is congruent to 
17 modulo 2.

• (d) If a natural is congruent to 4 modulo 14, it 
is composite.



Answer #3

• Which of the following statements is false?

• (a) Any two numbers in the set {1, 11, 111, 
1111,...} are congruent modulo 11. (1 and 11)

• (b) Any two numbers in the set {1, 11, 111, 
1111,...} are congruent modulo 10. (true)

• (c) If x > 2 and x is prime, x is congruent to 
17 modulo 2.  (Such primes are all odd.)

• (d) If a natural is congruent to 4 modulo 14, it 
is composite.  (It’s even and greater than 2.)



Congruence Classes
• Congruence modulo k is an equivalence 

relation, and we refer to the equivalence 
classes of this relation as the congruence 
classes modulo k. 

• For example, the two congruence classes 
modulo 2 are the set of odd numbers and the 
set of even numbers.

• Periodic processes in the real world or in 
computing can be modeled with the system 
of modular arithmetic we will begin 
studying in our next lecture.


