CMPSCI 250: Introduction to Computation

Lecture 9: Predicates and Quantifiers
David Mix Barrington
26 February 2013




Predicates and Quantifiers

 Predicates and Data Types

» Existential and Universal Quantifiers

* Free and Bound Variables

« Logical Equivalences for Quantifiers -- The DeMorgan Rules

* Nested Quantifiers

+ Translating Quantified Statements

+ Negating Quantified Statements




Predicates and Data Types

A proposition is a statement that is true or false. A predicate is a statement
that would be true or false if the value of a particular variable is known.

“8 < 7”7 is a proposition that is true. “7 < 3” is a proposition that is false. But
“x <y” is not a proposition. If we set x=3andy =7 itis true, and if we set x
=7andy=3itis false.

Propositions can deal with entities other than numbers. In programming, you
know that every variable has a type -- the range of possible values it might
take. To know what a proposition means, or when a predicate is true or false,
we need to know the type of any variables in it. What values for them are
possible? In logic, the range of values for a variable is also called the
universe of discourse.

We can name predicates. If | define T(x) to be “x is a terrier”, where x is of
type “dog”, then T(Cardie) and T(Duncan) are each propositions.




|Clicker Question #1

”

+ Let A(n) be the predicate “n < 7”, where the type of n is “integer”.

+ How many of the propositions A(3), A(7), and A(4) are true?

* (@) none of them

+ (b) one of them

* (c) two of them

+ (d) all three of them




Predicates in Program Correctness

When we reason about code, we are concerned with the truth of statements
whose meaning may change during the run of the code.

When we write a Java method we often state its preconditions, statements
we expect to be true before the method runs, and its postconditions,
statements that should be true after it runs if the preconditions were true. We
state these as predicates, because their truth usually cannot be determined
without the value of some variables.

A loop invariant is a statement that will remain true after a pass through a
loop, provided that it is true before the pass. We state loop invariants in
terms of the method’s variables, for example “x represents the number of
inputs seen so far”.

Predicates give us a language to make such statements, on which we can
then apply the rules of logic.




Existential and Universal Quantifiers

+ Given a predicate, say our T(x), and a data type, say “dogs who live with me”,
the predicate may be true for all the elements of the type, for some of them,
or for none of them. Quantifiers are a formal way to say such things about a
predicate.

The universal quantifier v is used to make a statement that a predicate is
always true. The statement “vx:T(x)” says that all of my dogs are terriers, a
proposition that is false.

The existential quantifier 3 is used to make a statement that a predicate is
sometimes true. The statement “ax:T(x)” says that at least one of my dogs is
a terrier, which is true.




|Clicker Question #2

« If the type of x is “my dogs” and T(x) means “x is a terrier”, and W(x) means
“x likes to go for walks”, what is the meaning of the quantified statement
“(vx: W(X)) A @x:T(X)) A (@x:2T(x))”?

+ (@) All my dogs like walks, at least one of my dogs is a terrier, and at least one
of my dogs is not a terrier.

+ (b) All of my dogs who like walks are terriers that exist, or non-terriers that
exist.

+ (c) All of my dogs are either terriers or non-terriers, and at least one likes
walks.




Free and Bound Variables

« Each use of a quantifier binds one variable. Consider the two-place
predicate P(x, y), meaning “dog x plays with dog y”. Now suppose we
quantify this statement to make “ax:P(x, y)”, meaning “there exists a dog x
who plays with dog y”. To know whether this is true, we need to know the
value of y -- for example, “3x: P(x, Duncan)” might be true while “ax: P(x,
Cardie)” is false.

In this example y is a free variable, since we need to know its value to
determine the meaning of the statement. But x is a bound variable -- it does
not make sense to speak of “ax: P(x, y)” being true for some values of x but
not others. The statement “3z: P(z, y)” would have the same meaning as
“ax:P(x, y)”, but “ax:P(x, z)” would have a meaning depending on z.




|Clicker Question #3

+ Let Q(x, y) be the predicate “x + y = 3”, where x and y are integers.
« Consider the quantified statement “vx: Q(x, y)”. Which is true?

* (@) x and y are both free variables

 (b) x is a free variable and y is a bound variable

* (c) x is a bound variable and y is a free variable

+ (d) x and y are both bound variables




Logical Equivalences: ANDs and ORs

+ Going back to dogs, let F(x) mean “x is furry”, R(x) mean “x is a retriever”, T(x)
mean “x is a terrier”, and W(x) mean “x likes to go for walks”.

» The statements “vx: F(x) A W(x)” and “(vx: F(x)) A (vx: W(x))” are logically
equivalent. The first means “all my dogs are both furry and like walks”, while
the second says “all my dogs are furry and all my dogs like walks”.

« But we have to be careful using “rules” like this. With my actual dogs, the
statement “vx: (R(x) v T(x))” is true, but “(vx:R(x)) v (vx:T(x))” is false!




|Clicker Question #4

+ Which pair of statements are logically equivalent?

(@) “ax: (T(x) A R(x))” and “(@x:T(x)) A (3x:R(x))”

+ (b) “ax: (T(x) v R(x))” and “(3x:T(x)) v (3x: R(x))”

* (c) “ax: T(x)” and “3x: =R(x)”




Translating Quantified Statements

« There are many ways to phrase a universal statement like “vx: F(x)”, where
the type of the variable x is “my dogs” and F(x) means “x is furry”:

+ “All my dogs are furry.”

* “For every one of my dogs, it is furry.”

» “If x is any of my dogs, then x is furry.”

« “There does not exist one of my dogs that is not furry” (—3x:=F(x))

» The last statement uses one of the DeMorgan laws and helps us see that the
statement would be true if | had no dogs at all.




More Translations of Quantified Statements

« Now let’s look at “ax:T(x)”, where x’s type is “my dogs” and T(x) means “x is a
terrier”. We can translate this as:

+ “There exists one of my dogs that is a terrier.”

+ “At least one of my dogs is a terrier.”

» “There is one of my dogs x with the property that x is a terrier.”

* “It is not true that all of my dogs are non-terriers.”

+ The last statement uses the other DeMorgan law for quantifiers, and in
symbols would be “=vx:=T(x)”. If | had no dogs, 3x:T(x) would be false.




Negating Quantified Statements

Recall the DeMorgan Laws of propositional logic: =(pAq) < (-p v =q) (and-to-
or), and =(pvq) < (-p A =q) (or-to-and). We have similar rules for quantified

statements, because an 3 is in effect a big OR, and a v just a big AND.

”

The negation of “vx: F(x)” (“all my dogs are furry”) is “3x: =F(x)” (“at least one
of my dogs is not furry”). To show that a universal statement is false, we need
a counterexample. If the data type is empty, no counterexample can exist
and any universal statement is true.

The negation of “ax: F(x)” (“at least one of my dogs is furry”) is “vx:=F(x)” (“all
my dogs are not furry”). To show that an existential statement is true, we
need a witness. If the data type is empty, no witness can exist and any
existential statement is false.




|Clicker Question #5

+ What is the negation of “Either all my dogs are terriers or one of them is not
furry”, or “(vx:T(x)) v (3x:—F(x))"?

* (a) “All my dogs are terriers and none of them are furry.” (vx:T(X)) A (vXx:=F(x))

« (b) “One of my dogs is not a terrier and all of them are furry.” (3x:=T(x)) A (vXx:F(x))

* (c) “None of my dogs are terriers or one of them is furry.” (vx:=T(x)) v (3x:F(x))




Nested Quantifiers

If we begin with a predicate that has more than one free variable, we can nest
more than one quantifier. If P(x, y) means “dog x plays with dog y”, we can
form such statements as “3x:vy:P(x, y)” (“there is a dog that plays with all
dogs”) and “vx:3y:P(x,y)” (“each dog has some dog that it plays with”).

Note that these two statements have no free variables -- they are propositions
that are either true or false with no variable value needing to be supplied.

Also note that these statements are different from each other: the first
requires that there be one dog that plays with all the others, while the second
would be true as long as each dog has a playmate, not necessarily all the
same one.

But ax:3y:P(x,y) and 3y:3x:P(x,y) are the same, even if P(x,y) and P(y,x) are not
-- the same is true for vx:vy:P(x,y) and vy:vx:P(x,y). Can you see why?




Translating Nested Quantifiers

« We can translate the colon after “ax” as “such that”, except in the case where
there are adjacent existential quantifiers. So “ax:vy:T(x) A P(x, y)” is “there
exists a dog x such that for all dogs vy, x is a terrier and x plays with y”. But
“ax:3y:T(x) A P(x,y)” is “there exist a dog x and a dog y such that x is a terrier
and x plays with y”.

The colon after “vx” is best left as a comma rather than “such that”. We
translate “vx:3y:F(x) A P(x,y)” as “for every dog x, there exists a dog y such
that x is furry and x plays with y”. Adjacent universal quantifiers get
translated with “and”, as in “vx:vy:F(x) A P(X, y)” which means “for all dogs x
and all dogs y, x is furry and x plays with y”.

There are more natural English phrasings of most quantified statements --
you often want to first translate the symbols exactly and then rephrase to get
something that means the same but sounds better.




Quantified Statements in Number Theory

» The main purpose of quantified statements in mathematics is to express
statements, and particularly properties of objects, precisely. In number theory
we begin with variables that range over the natural numbers N, and the
symbols for arithmetic.

- The predicate D(x, y) or “x divides y” can be defined as “3z:xz = y”.

« The predicate P(x) or “x is prime” can be defined as “(x > 1) A ~(3y:3z:(x = y2)
Ay >1) A (z>1)).” Using DeMorgan twice and some propositional logic rules,
we can write this as “(x > 1) A vy:vzi(x=yz) > (y< 1) v (z< 1))".

« “x =y (mod m)” can be written “ak: x + km = y” where k is an integer, or as
“D(m, x - y)” where x-y might be negative.




