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λ-NFA’s to NFA’s to DFA’s

• Reviewing the Three Models and Kleene’s Theorem

• The Subset Construction: NFA’s to DFA’s

• Applying the Construction to No-aba

• The Validity of the Subset Construction

• The Construction to Kill λ-Moves

• A Three-State Example

• The Validity of the Construction



Overview: Kleene’s Theorem

• We are discussing two classes of languages (sets of strings over a given 
alphabet).  The regular languages are the ones that are denoted by regular 
expressions.  The recognizable languages are the ones that can be decided 
by deterministic finite automata (DFA’s).

• Kleene’s Theorem says that these two classes are the same (and thus both 
are usually called “regular languages”).  We’ll do part of the proof of this 
theorem today and part in the next lecture on Thursday.  The proof will consist 
of algorithms to take an arbitrary regular expression and produce an equivalent 
DFA, or vice versa.

• Last lecture we introduced two variants of the DFA that will make our proof 
easier.  When we convert a regular expression to a finite automaton, our task is 
easier if we allow the automaton to be nondeterministic and to have λ-moves.  
Today we’ll see how to turn these variant machines into ordinary DFA’s.



Our Three Automaton Models
• Each of our different types of finite-state machines has a state set, a start 

state, and a set of final states.  Given any input string w, there are zero or 
more possible paths through the machine -- sequences of transitions whose 
labels are the letters of w, in order.  

• In a DFA, there is exactly one transition out of each state for each letter in the 
alphabet.  Thus there is a function δ from Q × Σ to Q, such that δ(q, a) is the 
state to which the machine must move if it sees an a when in state q.  Given a 
string w, there is one w-path from the start state, and the string is in the 
language of the DFA if that path goes to a final state.

• In an NFA, all we know is that there is a set of transitions, each an element of 
the set Q × Σ × Q.  If we are in state q and see an a, there may be zero, one, 
or more than one states r such that (q, a, r) is a transition.  The machine may 
take any of these transitions, and thus given an entire string w there may be 
zero, one or more than one path through the machine with labels forming w.  
The string w is in the language of the machine if there is at least one path.



λ-NFA’s

• In a λ-NFA, there may also be transitions labeled with the empty string λ.  If 
there is a transition (q, λ, r), this means that the machine may move from state 
q to state r without reading any letter at all.  Thus if the machine is in state q 
and the next letter is a, then along with whatever letter moves (q, a, s) may 
exist, it has the option of taking a λ-move without reading the a.

• For w to be in the language of a λ-NFA, there must be a path from a start 
state to some final state, whose labels consist of the letters of w in order, 
along with any number of λ-moves between those letters.  

• Suppose w is a string of n letters.  With a DFA, we test whether w is in its 
language by just tracing out the single path labeled by w.  With an NFA, we 
can test this by checking all possible paths of length n.  With a λ-NFA, there is 
no obvious limit on how long a path we might have to check to be sure that 
there isn’t any path from the start state to a final state.



The Subset Construction: NFA’s to DFA’s

• Later in this we’ll see how to convert λ-NFA’s to ordinary NFA’s.  Now, though, 
we will convert ordinary NFA’s to DFA’s using the Subset Construction.  Given 
an NFA N with state set Q, we will build a DFA D whose states will be sets of 
states of N -- formally, D’s state set is the power set of Q.

• Here’s an example of an NFA N for the language (0 + 01)*, with two states i 
and p, start state i, final state set {i}, and transitions (i, 0, i), (i, 0, p), and (p, 1, i).

• At the start of its run, N must be in state i.  If the first letter is 0, then it might 
be in either state i or p after reading the 0.  If the first letter is 1, there is no run 
of N that reads that letter.

• Our DFA D has states ∅, {i}, {p}, and {i, p}.  Its start state is {i}, its final states 
are {i} and {i, p}, and we have δ({i}, 0) = {i, p}, δ({i}, 1) = ∅, δ({i, p}, 0) = {i, p}, 
δ({i, p}, 1) = {i}, δ({p}, 0) = ∅, δ({p}, 1) = {0}, and δ(∅, a) = ∅ for both letters.



iClicker Question #1: Converting an NFA to a DFA

• Let N be the pictured NFA.  Let D be the DFA made 
from N by the Subset Construction, with δ its 
transition function.  Which statement about δ below 
is correct?

• (a) δ({p}, 0) = ∅ and δ({p}, 1) = {q}

• (b) δ({p}, 0) = {p} and δ({p}, 1) = {q}

• (c)  δ({p}, 0) = ∅ and δ({p}, 1) = {p, q}

• (d)  δ({p}, 0) = {p} and δ({p}, 1) = {p, q}



iClicker Question #2: Finishing The Conversion

• Since δ({p}, 1) = {p, q}, we need to determine the 
transitions out of the state {p, q}.  Which of these 
four statements about δ is correct?

• (a) δ({p, q}, 0) = {p} and δ({p, q}, 1) = ∅

• (b) δ({p, q}, 0) = ∅ and δ({p, q}, 1) = ∅

• (c) δ({p, q}, 0) = {p} and δ({p, q}, 1) = {p, q}

• (d) δ({p, q}, 0) = ∅ and δ({p, q}, 1) = {p, q}



Details of the Construction

• The general construction works just like this example.  The start state of D is 
{i}, where i is the start state of N.  The final state set of D is the set of all states 
of D that contain final states of N, since we want D to accept if N can accept.

• In general, we need to define δ(S, a) where S is a state of D, meaning that S is 
a set of states of N.  S represents the possible places N might be before 
reading the a.  The set T = δ(S, a) will be the set of all states q such that the 
transition (s, a, q) is in ∆ for some s ∈ S.  In the graph, we take the set of 
destinations of all the a-arrows that start from a state of S.  

• The most common mistake in computing δ comes when one of the states in 
S has no a-arrows out of it.  Students often think that ∅ must now be part of 
δ(S, a).  But in fact δ(S, a) is the union of the sets {q: ∆(s, a, q)} for each s ∈ S. 
So the empty set is part of the result, but doesn’t show up in the description 
of the result because unioning in ∅ is the identity operation on sets.



Applying the Construction to No-aba

• The language Yes-aba has an easy regular expression Σ*abaΣ*.  From this 
expression we can build an NFA N with state set {1, 2, 3, 4}, start state 1, final 
state set {4}, and ∆ = {(1, a, 1), (1, b, 1), (1, a, 2), (2, b, 3), (3, a, 4), (4, a, 4), (4, b, 
4)}.  But what if we want a machine for No-aba?  Switching the final and non-
final states of N will not do -- can you see why?

• The best way to get a DFA for No-aba is to first get one for Yes-aba.  We begin 
with the start state {1} and compute δ({1}, a) = {1, 2} and δ({1}, b) = {1}. Then we 
compute δ({1, 2}, a) = {1, 2} and δ({1, 2}, b) = {1, 3}.  Since {1, 3} is new, we 
must compute δ({1, 3}, a) = {1, 2, 4} and δ({1, 3}, b) = {1}.  Then we get δ({1, 2, 
4}, a) = {1, 2, 4} and δ({1, 2, 4}, b) = {1, 3, 4}.  Not done yet!  We have δ({1, 3, 4}, 
a) = {1, 2, 4} and δ({1, 3, 4}, b) = {1, 4}.  Finally, with δ({1, 4}, a) = {1, 2, 4} and 
δ({1, 4}, b) = {1, 4}, we are done -- the other states are unreachable.

• Clearly if we minimized this DFA, the three final states would merge into one.  
This gives us our familiar four-state DFA for Yes-aba, from which we can get 
one for No-aba.



The Validity of the Construction

• How can we prove that for any NFA N, the DFA D that we construct in this 
way has L(D) = L(N)?  

• The key property of D is that for any string w, δ*({i}, w) is exactly the set of 
states {q: ∆*(i, w, q)} that could be reached from i on a w-path.  We prove this 
property by induction -- it is clearly true for λ (though if we had λ-moves it 
would not be).  If we assume that δ*({i}, w) = {q: ∆*(i, w, q)}, we can then prove 
δ*({i}, wa) = {r: ∆*(i, wa, r)} for an arbitrary letter a, using the inductive 
definition of δ* in terms of δ, of δ in terms of ∆, and of ∆* in terms of ∆.

• Once this is done, it is clear that w ∈ L(D) ↔ ∃f: f ∈ δ*({i}, w) ↔ ∃f: ∆*(i, w, f) ↔ 
w ∈ L(N).

• Note that in general D could have 2k states when N has k states.  But if we 
don’t generate unreachable states, D could turn out to be much smaller.



The Construction to Kill λ-Moves

• Assume that we have a λ-NFA M, and we want to make an equivalent 
ordinary NFA N.  M and N will have the same state set, start state, and input 
alphabet.  Furthermore, if λ ∉ L(M), they also have the same final state set.

• The construction has three parts.  We consider the transitions in two groups, 
the letter moves and the λ-moves.

• We first add λ-moves to M until they are transitively closed, meaning that 
any λ-path has an equivalent λ-move.

• We then make the letter moves of N by finding all paths of M that read exactly 
one letter.  We can find these by taking all three-step paths of a λ-move, a 
letter move, and a λ-move.  (We ignore multiple copies of the same move.)

• If λ ∈ L(M), we add the start state i to the final state set of N.



iClicker Question #3: Transitive Closure of λ-Moves

• Suppose that a λ-NFA has four states p, q, r, s, and has exactly three λ-
moves: (p, λ, q), (r, λ, p), and (r, λ, s).  What new λ-moves must we add to 
make the λ-moves transitively closed, without changing the language of the 
λ-NFA?

• (a) none

• (b) (q, λ, p), (p, λ, r), and (s, λ, r)

• (c) (r, λ, q) only

• (d) (r, λ, q), (s, λ, p), and (s, λ, q)



A Three-State Example

• Define a λ-NFA with state set {p, q, r}, start state p, final state set {q}, input 
alphabet {a, b}, and ∆ = {(p, a, q), (q, λ, r), (r, λ, p), (r, b, r)}.

• There are two letter moves and two λ-moves.  For the transitive closure we 
must add one more move (q, λ, p).

• The letter move (p, a, q) gives us a letter move from any state with a λ-move 
to p, to any state with a λ-move from q.  This gives us all nine possible a-
moves, since we can get from anywhere to p and from q to anywhere on λ.

• The letter move (r, b, r) gives us letter moves from either q or r to either r or p.  
There are four such b-moves, so the ordinary NFA has 13 letter moves in all.

• Since λ ∉ L(M), we don’t need to alter the final state set of the ordinary NFA.



Finishing the Example

• Let’s form a DFA from this NFA.  The start state of the DFA is {p}.  We 
compute δ({p}, a) = {p, q, r} (and in fact δ takes any nonempty set and a to {p, 
q, r}), and δ({p}, b) = ∅.  We then compute δ({p, q, r}, b) = {p, r} and δ({p, r}) = 
{p, r}.  We have completed the Subset Construction with only four of the 
possible eight states being reachable.

• This DFA is also the minimal DFA.  We could carry out the construction, but it 
is perhaps easier just to show that the three non-final states are pairwise 
distinguishable.  (Of course the single final state, {p, q, r}, is in a class by 
itself.)  The string a distinguishes either {p} or {p, r} from ∅, and the string b 
distinguishes {p} and {p, r} from each other.



iClicker Question #4: New Letter Moves From Old

• Suppose that our λ-NFA has state set {p, q, r, s} and only the two λ-moves (p, 
λ, q) and (r, λ, s).  (The transitive closure operation adds no new λ-moves.)  
Suppose further that (q, a, r) is a letter-move in the λ-NFA.  What set of letter 
moves do we add to our ordinary NFA because of this letter-move?

• (a) none

• (b) (q, a, r) only

• (c) (p, a, r), (p, a, s), (q, a, r), and (q, a, s)

• (d) all sixteen possible moves (x, a, y) for any x and y in {p, q, r, s}



Validity of the Construction

• Let’s now assume that we have carried out this construction on a λ-NFA M to 
produce an ordinary NFA N -- we would like to prove that L(M) = L(N).

• We would like it to be true that for any string w, the set of states q such that 
∆M*(i, w, q) is exactly the set of states r such that ∆N*(i, w, r).  But we can’t do 
this for the empty string, because there might be more than one state of M 
reachable on λ, but in an ordinary NFA the only λ-path from i goes to i itself.  
This is why we altered the final state set of N.

• We will thus have a Lemma that these two sets are equal for any nonempty 
string, and we will prove this by induction on strings.

• We then have to account for empty strings, and make sure as well that our 
change to the final state set does not affect the membership of any nonempty 
strings.



The Main Lemma

• To save subscripts, we will refer to the relations for M as ∆ and ∆*, and those for 
N as Γ and Γ*.  We are proving ∀w: (w ≠ λ) → [∀q: ∆*(i, w, q) ↔ Γ*(i, w, q)].

• Remember that ∆* with middle term λ is defined in terms of λ-paths, and that 
∆*(i, wa, q) is defined to be ∃r:∃s:∃t: ∆*(i, w, r) ∧ ∆*(r, λ, s) ∧ ∆(s, a, t) ∧ ∆*(t, λ, q).

• Γ(s, λ, t) means just s = t, and Γ*(i, wa, q) is defined to be ∃z: Γ*(i, w, z) ∧ Γ(z, a, 
q), and Γ(z, a, q) is defined to be ∃r:∃t: ∆*(z, λ, r) ∧ ∆(r, a, t) ∧ ∆*(t, λ, q).

• For our base case we compute both ∆*(i, a, q) and Γ*(i, a, q) and find them equal.

• For the inductive case we assume that ∆*(i, w, q) ↔ Γ*(i, w, q) and use the 
definitions above to prove that ∆*(i, wa, r) ↔ Γ*(i, wa, r).



The Case of Empty Strings

• If λ ∉ L(M), the final state sets FM and FN are the same, so we know from the 
Lemma that every nonempty string is in L(M) if and only if it is in L(N).  All we 
need to do, then, is prove that λ is not in L(N).  Since N has no λ-moves, we 
just need to show that i is not a final state.  But if i were a final state, λ would 
be in L(M), and it isn’t.  So in this case L(M) = L(N).

• Now suppose that λ ∈ L(M), so that by our last step FN = FM ∪ {i}.  It’s clear 
that λ is in L(N), which is good because it is in L(M).  

• Now consider any non-empty string w.  If w ∈ L(M), then ∆*(i, w, f) for some f ∈ 
FM.  By the Lemma, Γ*(i, w, f) is also true, and since f ∈ FN as well, w ∈ L(N).  
Finally, suppose that w ∈ L(N), so that Γ*(i, w, f) for some f ∈ FN.  By the 
Lemma, ∆*(i, w, f) as well.  If f ∈ FM, this tells us that w ∈ L(N).  But what if f = 
i?  Since λ ∈ L(M), we have ∆*(i, λ, g) for some state g ∈ FM.  From ∆*(i, w, i) 
and ∆*(i, λ, g) we can derive ∆*(i, w, g), and thus w ∈ L(M) here as well.


