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Non-Regular Languages and Myhill-Nerode

• The Strings For Each State of a DFA

• L-Distinguishable Strings

• Languages With No DFA’s

• The Relation of L-Equivalence

• More than k Classes Means More Than k States

• Constructing a DFA From the Relation

• The Minimal DFA For a Language



The Strings for Each State of a DFA

• A DFA with k states divides the strings in Σ* into k 
categories, based on what state it takes each string 
to.

• In this example, a three-state DFA whose language 
is all strings that don’t have a 11 substring, we can 
say that certain strings go to state A, others to B, 
and others to C.  The language of the DFA is the 
union of the A class and the B class.  If we changed 
the final state set, the language would be some 
other union of some of these three classes.

• There are limits to the kind of classes a DFA can 
divide Σ* into.  We’ll use these to prove limits on the 
power of DFA’s to decide languages.



iClicker Question 1: Strings for a Given State

• In the pictured DFA, what is the set of strings 
that take the DFA to state q1 when started in 
state q1?

• (a) the language 0*

• (b) the language ∅

• (c) the language 1(1+0(0+1))*

• (d) the language (0+1)*



A Definition: L-Distinguishable Strings

• Let L ⊆ Σ* be any language.  Two strings u and v are L-distinguishable (or L-
inequivalent) if there exists a string w such that uw ∈ L ⊕ vw ∈ L.  They are L-
equivalent if for every string w, uw ∈ L ↔ vw ∈ L (we write this as u ≡L v).

• For example, let L be the language of the DFA on the previous slide, the set of 
strings with no “11”, which is denoted by the regular expression (0+10)*(1+λ). 
The strings u = 1001 and v = 1000 are L-distinguishable, because we can 
take w to be the string 1.  Then uw = 10011 is not in L, but vw = 10001 is.

• Any string u in L is L-distinguishable from any string v not in L, because we 
can always take w = λ.  Then uw is in L and vw is not.   

• Suppose that a DFA M takes L-distinguishable string u and v to the same 
state.  Then it also takes uw and vw to the same state.  The language L(M) 
cannot be L, because if it were that state would be both final and non-final.



iClicker Question #2: L-Distinguishable Strings

• Let L be the language (a + ba*ba*b)*, of strings with a number of b’s that is 
divisible by 3.  Which pair of strings is not L-distinguishable?

• (a) bbab and aab

• (b) aaa and bbb

• (c) aaab and baabaab

• (d) λ and bbaaabb



Sets of Pairwise L-Distinguishable Strings

• We just saw that if a DFA takes two L-distinguishable strings to the same 
state, it cannot have L as its language.  What if S is a set of pairwise L-
distinguishable strings, meaning that any two distinct strings in S are L-
distinguishable?

• In that case, any DFA that has L as its language must have at least as many 
states as S has strings.  Why?  If there were fewer states than strings, the 
DFA must take two or more strings to the same state by the Pigeonhole 
Principle.  And it can’t take two L-distinguishable strings to the same state.

• In our example, the strings 1001, 1000, and 11 are pairwise L-distinguishable 
for our language (0+10)*(1+λ).  That means that no DFA with fewer than three 
states could possibly have L as its language.  The three-state DFA we have is 
thus a minimal DFA for L.



Languages With No DFA’s

• If S is an infinite set of pairwise L-distinguishable strings, no correct DFA for L 
can exist at all. 

• The easiest language to prove unrecognizable by any DFA is EQ, defined as 
{anbn: n ≥ 0} or {λ, ab, aabb, aaabbb,...}.  Here our set S is {ai: i ≥ 0} or {λ, a, 
aa, aaa,...}.  If i and j are two distinct natural numbers, then the strings ai and 
aj are EQ-distinguishable because aibi is in EQ and ajbi is not.

• For another example, consider the language Paren ⊆ {L, R}* which contains 
all strings of L’s and R’s that represent balanced sets of parentheses.  Paren 
has such a set,  {Li: i ≥ 0}, because if i ≠ j then LiRi is in Paren but LjRi is not.  
So any two distinct strings in the set are L-distinguishable.  No DFA for Paren 
exists, and thus Paren is not a DFA-recognizable language.



The Language Prime Has No DFA

• Let Prime be the language {an: n is a prime number}.  It doesn’t seem likely 
that any DFA could decide Prime, but this is a little tricky to prove.

• Let i and j be two naturals with i > j.  We’d like to show that ai  and aj are 
Prime-distinguishable, by finding a string ak such that aiak ∈ Prime and ajak ∉ 
Prime.  We need a natural k such that i + k is prime and j + k not, or vice versa.

• Pick a prime p bigger than both i and j (since there are infinitely many primes).  
Does k = p - j work?  It depends on whether i + (p - j) is prime -- if it isn’t we 
win because j + (p - j) is prime.  If it is prime, look at k = p + i - 2j.  Now j + k is 
the prime p + (i - j), so if i + k = p + 2(i - j) is not prime we win.

• We find a value of k that works unless all the numbers p, p + (i - j), p + 2(i - j),..., 
p + r(i - j),... are prime.  But p + p(i - j) is not prime as it is divisible by p.



The Relation of L-Equivalence

• The relation of L-equivalence is aptly named because we can easily prove 
that it is an equivalence relation -- it is reflexive, symmetric, and transitive.  
Clearly ∀w: uw ∈L ↔ uw ∈ L, so it is reflexive.  If we have that ∀w: uw ∈ L ↔ 
vw ∈ L, we may conclude that ∀w: vw ∈ L ↔ uw ∈ L, and thus it is symmetric.  
Transitivity is equally simple to prove.

• We know that any equivalence relation partitions its base set into 
equivalence classes.  The Myhill-Nerode Theorem says that for any 
language L, there exists a DFA for L with k or fewer states if and only if the L-
equivalence relation’s partition has k or fewer classes.  That is, if the number 
of classes is a natural k then there is a minimal DFA with k states, and if the 
number of classes is infinite then there is no DFA at all.

• It’s easiest to think of the theorem as “k or fewer states ↔ k or fewer classes”.



iClicker Question #3: Equivalence Classes

• If R is an equivalence relation on a set X, the equivalence class of an 
element w is the set of elements of X that are “equivalent” to w, that is, the 
set {z: R(z, w)}.  Define a relation R on {a, b}* so that R(u, v) means “u and v 
both begin with the same letter and end with the same letter”.  What is the 
equivalence class of the string bbaa for this relation?

• (a) the set of all strings that begin with b and end with a, that is, bΣ*a.

• (b) the set of all strings except bbaa itself

• (c) {bbaa}

• (d) the empty set ∅



More Than k Classes Means More Than k States

• We’ve essentially already proved half of this theorem.  We can take “k or 
fewer states → k or fewer classes” and take its contrapositive, to get “more 
than k classes → more than k states”.  

• Let L be an arbitrary language and assume that the L-equivalence relation has 
more than k (non-empty) equivalence classes.  Let x1,...,xk+1 be one string 
from each of the first k + 1 classes.  Since any two distinct strings in this set 
are in different classes, by definition they are not L-equivalent, and this means 
that they are L-distinguishable.  

• By our result from earlier in this lecture, since there exists a set of k + 1 
pairwise L-distinguishable strings, no DFA with k or fewer states can have L 
as its language.  

• This proves the first half of the Myhill-Nerode Theorem.



Constructing a DFA From the Relation

• Now to prove the other half, “k or fewer classes → k or fewer states”.  In fact 
we will prove that if there are exactly k classes, we can build a DFA with exactly 
k states.  This DFA will necessarily be the smallest possible for the language, 
because a smaller one would contradict the half we have proved.

• Let L be an arbitrary language and assume that the classes of the relation are 
C1,..., Ck.  We will build a DFA with states q1,...,qk, each state corresponding to 
one of the classes.

• The initial state will be the state for the class containing λ.  The final states will 
be any states that contain strings that are in L.  The transition function is 
defined as follows.  To compute δ(qi, a), where a ∈ Σ, let w be any string in the 
class Ci and define δ(qi, a) to be the state for the class containing the string wa.

• It’s not obvious that this δ function is well-defined, since its definition contains 
an arbitrary choice.  We must show that any choice yields the same result.



Completing the Proof

• Let u and v be two strings in the class Ci.  We need to show that ua and va 
are in the same class as each other.  That is, for any u, v, and a, we must 
show u ≡L v → ua ≡L va.  Assume that ∀w: uw ∈ L ↔ vw ∈ L.  Let z be an 
arbitrary string.  Then uaz ∈ L ↔ vaz ∈ L, because we can specialize the 
statement we have to az.  We have proved ∀z: uaz ∈ L ↔ vaz ∈ L or ua ≡L va.

• Now we prove that for this new DFA and for any string w, δ*(i, w) = qj ↔ w ∈ 
Cj.  (Here “i” is the initial state of the DFA.)  We prove this by induction on w.  
Clearly δ*(i, λ) = i, which matches the class of λ.  Assume as IH that δ*(i, w) = 
x matches the class of w.  Then for any a, δ*(i, wa) is defined as δ(x, a) which 
matches the class of wa by the definition, which is what we want.

• If two strings are in the same class, either both are in L or both are not in L.  
So L is the union of the classes corresponding to our final states.  Since the 
DFA takes a string to the state for its class, δ*(i, w) ∈ F ↔ w ∈ L.



The Minimal DFA and Minimizing DFA’s

• Let X be a regular language and M be any DFA such that L(M) = X.  We will 
show that the minimal DFA, constructed from the classes of the L-
equivalence relation, is contained within M.  

• We begin by eliminating any unreachable states of M, which does not change 
M’s language. 

• Remember that a correct DFA cannot take two L-distinguishable strings to 
the same state.  So for any state p of M, the strings w such that δ(i, w) = p are 
all L-equivalent to each other.  Each state of M is thus associated with one of 
the classes of the L-equivalence relation.  

• The states of M are thus partitioned into classes themselves.  If we combine 
each class into a single state, we get the minimal DFA.  In Discussion #12 on 
Monday we will see, and then practice, a specific algorithm to find these 
classes and thus construct the minimal DFA equivalent to any given DFA.



iClicker Question #4: A Non-Minimal DFA

• Here is a five-state DFA that is not a minimal DFA for its 
language X (which is (a + ba)Σ*).  Which of these four 
statements about this DFA is false?

• (a) The two final states s and t could be merged into one 
without changing the language of the DFA.

• (b) The strings b and bb are X-distinguishable.

• (c) States q and r could be merged into one without 
changing the language of the DFA.

• (d) The set {λ, a, b, bb} is a pairwise X-distinguishable set of 
strings.


